Day: April 26, 2016

WSJ Describes Reckless Behavior by FBI in Terrorism Case

The Wall Street Journal published an article today citing a source at the FBI is planning to tell the White House that “it knows so little about the hacking tool that was used to open terrorist’s iPhone that it doesn’t make sense to launch an internal government review”. If true, this should be taken as an act of recklessness by the FBI with regards to the Syed Farook case: The FBI apparently allowed an undocumented tool to run on a piece of high profile, terrorism-related evidence without having adequate knowledge of the specific function or the forensic soundness of the tool.

Best practices in forensic science would dictate that any type of forensics instrument needs to be tested and validated. It must be accepted as forensically sound before it can be put to live evidence. Such a tool must yield predictable, repeatable results and an examiner must be able to explain its process in a court of law. Our court system expects this, and allows for tools (and examiners) to face numerous challenges based on the credibility of the tool, which can only be determined by a rigorous analysis. The FBI’s admission that they have such little knowledge about how the tool works is an admission of failure to evaluate the science behind the tool; it’s core functionality to have been evaluated in any meaningful way. Knowing how the tool managed to get into the device should be the bare minimum I would expect anyone to know before shelling out over a million dollars for a solution, especially one that was going to be used on high-profile evidence.

A tool should not make changes to a device, and any changes should be documented and repeatable. There are several other variables to consider in such an effort, especially when imaging an iOS device. Apart from changes made directly by the tool (such as overwriting unallocated space, or portions of the file system journal), simply unlocking the device can cause the operating system to make a number of changes, start background tasks which could lead to destruction of data, or cause other changes unintentionally. Without knowing how the tool works, or what portions of the operating system it affects, what vulnerabilities are exploited, what the payload looks like, where the payload is written, what parts of the operating system are disabled by the tool, or a host of other important things – there is no way to effectively measure whether or not the tool is forensically sound. Simply running it against a dozen other devices to “see if it works” is not sufficient to evaluate a forensics tool – especially one that originated from a grey hat hacking group, potentially with very little actual in-house forensics expertise.

Read More

Hardware-Entangled APIs and Sessions in iOS

Apple has long enjoyed a security architecture whose security, in part, rests on the entanglement of their encryption to a device’s physical hardware. This pairing has demonstrated to be highly effective at thwarting a number of different types of attacks, allowing for mobile payments processing, secure encryption, and a host of other secure services running on an iPhone. One security feature that iOS lacks for third party developers is the ability to validate the hardware a user is on, preventing third party applications from taking advantage of such a great mechanism. APIs can be easily spoofed, as a result, and sessions and services are often susceptible to a number of different forms of abuse. Hardware validation can be particularly important when dealing with crowd-sourced data and APIs, as was the case a couple years ago when a group of students hacked Waze’s traffic intelligence. These types of Sybil attacks allow for thousands of phantom users to be created off of one single instance of an application, or even spoof an API altogether without a connection to the hardware. Other types of MiTM attacks are also a threat to applications running under iOS, for example by stealing session keys or OAuth tokens to access a user’s account from a different device or API. What can Apple do to thwart these types of attacks? Hardware entanglement through the Secure Enclave.

Read More