Digital Investigation 11 (2014) 3-19

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Identifying back doors, attack points, and surveillance @CmssMark
mechanisms in i0S devices

Jonathan Zdziarski

ARTICLE INFO ABSTRACT
Article history: The i0S operating system has long been a subject of interest among the forensics and law
Received 10 December 2013 enforcement communities. With a large base of interest among consumers, it has become

Received in revised form 23 January 2014

the target of many hackers and criminals alike, with many celebrity thefts (For example,
Accepted 26 January 2014

the recent article “How did Scarlett Johansson's phone get hacked?”) of data raising
awareness to personal privacy. Recent revelations (Privacy scandal: NSA can spy on smart

Keywords: phone data, 2013; How the NSA spies on smartphones including the BlackBerry) exposed
Eortelngtlcts‘ the use (or abuse) of operating system features in the surveillance of targeted individuals
i())(g oltation by the National Security Agency (NSA), of whom some subjects appear to be American
Back doors citizens. This paper identifies the most probable techniques that were used, based on the
Security descriptions provided by the media, and today’s possible techniques that could be
Malware exploited in the future, based on what may be back doors, bypass switches, general
Spyware weaknesses, or surveillance mechanisms intended for enterprise use in current release
Surveillance versions of i0S. More importantly, I will identify several services and mechanisms that can
be abused by a government agency or malicious party to extract intelligence on a subject,
including services that may in fact be back doors introduced by the manufacturer. A
number of techniques will also be examined in order to harden the operating system

against attempted espionage, including counter-forensics techniques.
© 2014 Elsevier Ltd. All rights reserved.
Introduction contact lists, SMS traffic, notes and location information
about where a user has been. ...In the internal documents,
German news outlet Der Spiegel ran an article (Privacy experts boast about successful access to iPhone data in
scandal: NSA can spy on smart phone data, 2013) in instances where the NSA is able to infiltrate the computer a
September 2013 citing leaked NSA documents that boasted person uses to sync their iPhone. Mini-programs, so-called
of the agency’s capabilities in hacking iPhones as early on "scripts,” then enable additional access to at least 38

as 2009. As the article describes it, the NSA allegedly hacks iPhone features.”

into the desktop machine of their subjects and then runs
additional “scripts” that allow them to access a number of
additional “features” running on the subjects’ iPhones.
From the article:

Another article (How the NSA spies on smartphones
including the BlackBerry) from Der Spiegel goes into
greater detail, providing examples of instances where a
user’s photo album and backup data were accessed. Of

“The documents state that it is possible for the NSA to tap course, some of this data could have easily been extracted

most sensitive data held on these smart phones, including from other possible NSA activities, such as iCloud inter-

ception (How the NSA cracked the web), SMS interception
(iPhone users are all zombies), or copied from a desktop
E-mail address: jonathan@zdziarski.com. backup on a compromised computer (Zdziarski; How the

http://dx.doi.org/10.1016/j.diin.2014.01.001
1742-2876/© 2014 Elsevier Ltd. All rights reserved.

mailto:jonathan@zdziarski.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.01.001&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.01.001
http://dx.doi.org/10.1016/j.diin.2014.01.001

4 J. Zdziarski / Digital Investigation 11 (2014) 3-19

NSA spies on smartphones including the BlackBerry), but
given the nature of the article, I'll assume that in at least
some circumstances, the NSA appears to claim the capa-
bility to access data on the device directly. The scope of this
document will be limited only to harvesting data at rest on
the device.

While the actual methods could only be confirmed by
the agency itself, the simplest, and most technically feasible
explanation, based on the techniques described and the
data purportedly stolen, is that the NSA has exploited the
trusted relationship between a user’s desktop machine and
a connected iOS device, used that trusted relationship to
then start up a number of otherwise protected, yet un-
documented data services running on the device, which
will be explored later in this paper. This technique provides
not only the ability to transfer a significant amount of data
from an iPhone (possibly copying to some remote
command-and-control server), but would also allow an
agency such as NSA to bypass certain aspects of file system
encryption, backup encryption, and also (if they chose)
perform a number of other capabilities, including the
following.

e Download large amounts of decrypted personal
information
Install spyware on the mobile device itself
Sniff the network traffic going through the device
Install mobile APN profiles to redirect Internet traffic to
a proxy server
Generate additional pairing records for exclusive use
Access the content of any application’s sandbox
Perform these and other tasks without the user’s
knowledge

While Der Spiegel made no written mention of WiFi, the
technical possibility exists that NSA (or any other malicious
attacker) could also do much of this wirelessly, while the
phone is sitting in the targeted subject’s pocket, or even
while they use the device, without any visual indicators.
This paper will identify some of the services and poorly
protected mechanisms that can be abused to accomplish all
of this, and provide some solutions to disable them, with
very little notice to the average end-user.

My own experience in researching iOS has led me to
believe that Der Spiegel’s article is not far off from the same
approach I am describing, as recent versions of i0OS
(including iOS 6 and 7) have seen a lot of new activity in the
development of undocumented services to copy very spe-
cific personal data items, explained further in this
document.

While the consumer has seen new security mechanisms
introduced over time, such as backup encryption, new
workarounds have also seemingly been added by Apple to
work around them (such as adding more undocumented
data sources that bypass encryption, explained in Section
3.7). Similar security enhancements have been made to
improve the security of iOS 7, such as a confirmation dialog
to trust new desktop connections. Unfortunately, this
doesn’t help when dealing with a compromised desktop
that has already established a trusted relationship. To

further threaten the effectiveness of this new feature, Ap-
ple’s new over-the-air (OTA) supervision and automatic
enrollment for i0S 7's MDM (iOS 7 and business) makes it
much easier for an agency that specializes in hacking to
turn a one-time opportunity to connect to a device into
long-term surveillance, using new undocumented security
bypasses. One such bypass added to iOS 7 (presumably
added for enrolled enterprise devices) provides an override
for passcode and fingerprint authentication. Such
enterprise-grade data assurance features are an easy target
for skilled individuals with trusted access to a device. While
the hacks of the past have found ways to brute force PIN
codes and unravel encryption, new features like this appear
to be added to intentionally bypass a number of security
features under the right circumstances. The problem,
however, is that such privileged mechanics can be taken
advantage of in the wrong circumstances when dealing
with an adversary within government.

Pairing: the keys to everything

In order to understand how an attacker could penetrate
an iPhone from the owner’s desktop computer, it’s impor-
tant to understand how pairing works (A cross-platform
software library and tools to communicate with iOS de-
vices natively); A pairing is a trusted relationship with
another device, where the client device is granted privi-
leged, trusted access. In order to have the level of control to
download personal data, install applications, or perform
other such tasks on an iOS device, the machine it’s con-
nected to must be paired with the device. This is done
through a very simple protocol, where the desktop and the
phone create and exchange a set of keys and certificates.
These keys are later used to authenticate and establish an
encrypted SSL channel to communicate with the device.
Without the correct keys, the attempted SSL handshake
fails, preventing the client from obtaining privileged access.

A copy of the keys and certificates are stored in a single
file, both on the desktop machine and on the paired mobile
device. The pairing file is never deleted from the device
except when the user performs a restore or uses Apple’s
“Erase All Content and Settings” feature. In other words,
every desktop that a phone has been plugged into (espe-
cially prior to iOS 7) is given a skeleton key to the phone.
This pairing record allows either the desktop, or any client
who has copied the file, to connect to the subject’s mobile
device and perform a number of privileged tasks that can
access personal data, install software, analyze network
content, and so on. This one pairing file identifies someone
as the owner of the phone, and with this file gives anyone
trust and access as the device’s owner. There are a few
frightening things to know about the pairing mechanism in
ioS.

e Pairing happens automatically, without any user inter-
action (up until i0S 7), and only takes a few seconds.
Pairing can be performed by anything on the other end
of the USB cable. The mobile device must either have no
passcode, or be unlocked. If the user has “Require

J. Zdziarski / Digital Investigation 11 (2014) 3-19 5

Passcode” set to anything other than “Immediate”, then
itis also possible to pair with the device after it is turned
off, until the lock timer expires. So if the user has a de-
vice unlocked to play music, and connect it to an alarm
clock or a charger running malicious code, whatever it’s
connected to can establish a pairing record that can later
on be used to gain access to the device, at any point in
time, until the device is restored or wiped.

e While the pairing process itself must take place over
USB (Renard), at any time after that, the phone can be
accessed over either USB or WiFi regardless of whether
or not WiFi sync is turned on. This means that an
attacker only needs a couple of seconds to pair with a
device, and can then later on access the device to
download personal data, or wreak other havoc, if they
can reach it across a network. Additionally, an attacker
can easily find the target device on a WiFi network by
scanning TCP:62078 and attempting to authenticate
with this pairing record. As the pair validation process is
very quick, sweeping a LAN’s address space for the
correct iOS device generally only takes a short amount
of time.

e Because of the way WiFi works on these devices, an
attacker can take advantage of the device’s “known
wireless networks” to force a phone to join their network
when within range, so that they can attack the phone
wirelessly. This is due to i0S’ behavior of automatically
joining networks whose name (not MAC address) it
recognizes, such as “linksys” or “attwifi”. It may even be
possible for a government agency with privileged access
to a cellular carrier’s network to connect to the device
over cellular (although I cannot verify this, due to the
carrier’s firewalls).

Essentially, that tiny little pairing record file is the key to
downloading, installing, and even manipulating data and
applications on the target device. That is why I have advised
law enforcement agencies to begin seizing desktop ma-
chines, so that they can grab a copy of this pairing record in
order to unlock the phone; a number of forensic imaging
products (including some I've written), and even open
source tools (A cross-platform software library and tools to
communicate with i0S devices natively) are capable of
acquiring data from a locked mobile device, so long as the
desktop’s pairing record has been recovered. The pairing
record also contains an escrow keybag, so that it can unlock
data that is protected by data-protection encryption
(Renard). This is good news for the “good” cops, who do
crazy things like get warrants; it’s very bad for anyone who
is targeted by spy agencies or malicious hackers looking to
snoop on their data.

High value services running under iOS

When a user’s desktop computer establishes a connec-
tion to an iOS device, it talks to a service named lockdownd.
This runs on port 62078 (Renard; Usbmuxd), and can
accept connections across either USB (via Apple’s usbmux
(Usbmux) protocol), or WiFi via TCP. The lockdownd pro-
cess acts much like an authenticated version of inetd, where

the client requests services, which are farmed out to a
number of daemons started on the device.

When a client has connected to the iOS device on this
port, lockdown forces the client to authenticate by using a
host identifier and keys from the pairing record file we've
just discussed, issuing a StartSession request. On a Mac
running OS X, pairing records are often stored in/var/db/
lockdown or ~ /Library/Lockdown. On Windows 7, They’re in
C:\Program Data|Apple|iTunes|Lockdown. Other operating
system variants will vary. Once the desktop authenticates,
the keys in the file are used to establish an SSL session with
the device (A cross-platform software library and tools to
communicate with i0S devices natively; 25C3: hacking the
iPhone, 2008); the desktop machine is then able to requests
any number of services to be started on the phone, using a
StartService request, identifying the name of the service to
be started (A cross-platform software library and tools to
communicate with i0OS devices natively; 25C3: hacking the
iPhone, 2008).

Available services, or as the Der Spiegel article (Privacy
scandal: NSA can spy on smart phone data, 2013) calls,
“features”, include everything from basic backup and sync
services, to more suspicious services that shouldn’t ever be
running on a mobile device, but come preinstalled by Ap-
ple’s factory firmware.

A file on the device named Services.plist provides a
catalog of services that can be started by lockdownd (Miller
et al.); users who have installed a jailbreak onto their
phones can access this file in/System/Library/Lockdown/
Services.plist or it can be copied by decrypting the file sys-
tem disk of an Apple firmware bundle (xpwntool). Addi-
tionally, when a device is enabled for developer mode, a
number of other services are added to the/Developer folder
on the device, to allow Xcode to perform tasks such as
debugging. The standard catalog of services includes
(among others) the following.

It is important to note that the services to follow are
available on every iOS device, regardless of whether or not
the phone is enabled for development.

com.apple.mobilebackup2 (Renard; A cross-platform software
library and tools to communicate with i0OS devices natively;
Bédrune and Sigwald)

Used by iTunes to create a backup of the user data on the
device. This is the most popular service to be cloned by
forensics software, as it obtains a majority of user data-
bases, such as address book, SMS, call history, and so on.
This is the only service that is affected by turning on iTunes’
Backup Encryption feature. When backup encryption is on,
these files are encrypted, requiring knowledge of the user
password in order to decipher. Devices without backup
encryption stand to leak a significant amount of informa-
tion from this service. If a user’s desktop is compromised, it
is conceivable that a key logger could potentially log the
backup password, also putting their encrypted backups at
risk. The encryption scheme is publicly documented, and
source code to decrypt a backup can be found at Bédrune
and Sigwald.

Even though a user may not maintain a local backup on
their desktop machine, this backup service can be

6 J. Zdziarski / Digital Investigation 11 (2014) 3-19

connected to with a trusted connection to generate a
backup on-the-fly. Earlier versions of this service caused
the device to present a modal status screen to the user,
however newer versions of iOS merely only display a small
sync indicator in the task bar.

com.apple.mobilesync (Renard; A cross-platform software
library and tools to communicate with iOS devices natively)

Also used by iTunes to transfer address book, Safari
bookmarks, notes, and other information that the user has
selected to sync with their desktop machine. This service is
not affected by backup encryption, and so clear text copies
of personal data will come across this service. Only data
that is specifically designated to sync will be transferred by
this service.

Earlier versions of this service caused the device to
present a modal status screen to the user, however newer
versions of iOS merely only display a small sync indicator in
the task bar. This service, and the backup service just
described, are the only two services that present a visual
indicator of any kind to the user when the service is being
accessed.

com.apple.afc (Renard; A cross-platform software library and
tools to communicate with iOS devices natively)

This service is often used to access the user’s camera
reel, photo album, music, and other content stored in the/
var/mobile/Media folder on the device. By communicating
with this service, any trusted device can download the
entire media folder. Users who have installed a jailbreak
on their iOS devices may also notice a com.apple.afc2
service installed by the jailbreak tool (The iPhone wiki),
which allows a trusted desktop machine to access and
download the entire file system. This service presents no
visual indication to the user that the device is being
accessed.

com.apple.mobile.installation_proxy (Renard; EvasiOn
jailbreak; A cross-platform software library and tools to
communicate with i0S devices natively)

This service is invoked whenever iTunes installs an
application on a mobile device. With knowledge of how to
speak this protocol, malicious software can also use this
service to install software on the device. While all software
has to be signed by Apple in order to successfully install,
any entity with an enterprise developer license can sign
code and install it through this service ad-hoc, without
distributing it through the App Store, and without regis-
tering the device with the Apple Developer Connection.
This service presents no visual indication to the user that
the device is being accessed.

com.apple.mobile.house_arrest (Renard; A cross-platform
software library and tools to communicate with iOS devices
natively)

This service can be used to access the contents of any
App Store application’s sandbox (where user databases,

screenshots, and other content for each application is
stored). By iterating through the list of installed applica-
tions on the device, it is possible to download user data-
bases, suspend screenshots, and other personal
information from every third party app on the device. It is
also possible to upload content into the application’s
sandbox, allowing someone to inject data. This service
presents no visual indication to the user that the device is
being accessed.

While this service is used by iTunes to copy documents
in and out of applications, the service itself allows access to
persistent application data (that is, databases, caches,
screenshots, and the like), allowing forensic tools to recover
persistent data that is not normally included in a device
backup.

com.apple.pcapd (Hacking iOS applications)

Connecting to this service immediately starts a packet
sniffer on the device, allowing the client to dump the
network traffic and HTTP header data traveling into and
out of the device. While a packet sniffer can, on rare
occasion, be helpful to a developer writing network-
based applications, this packet sniffer is installed by
default on all devices and not only for devices that have
been enabled for development. This means anyone with a
pairing record can connect to a target device via USB or
WiFi and listen in on the target’s network traffic. It re-
mains a mystery why Apple decided that every single
recent device needed to come with a packet sniffer. This
service presents no visual indication to the user that the
device is being accessed.

com.apple.mobile file_relay (Renard; EvasiOn jailbreak; A
cross-platform software library and tools to communicate
with i0S devices natively)

The file relay is among the biggest forensic trove of in-
telligence on a device’s owner and, in my best and most
honest opinion, a key “backdoor” service that, when used to
its full capability, provides a significant amount of that that
would only be relevant to law enforcement or spying
agencies.

Apple seemingly has been making many changes over
the past few years to enable the extraction of information
through the undocumented file relay service that really
only has relevance to purposes of spying and/or law
enforcement. This can be seen by comparing the object
code from different operating system versions over time,
using a disassembler or other similar tools. For example,
early versions of iOS provided a very limited number of
data sources, serving primarily diagnostic mechanisms to
transfer log files and limited personal data. Newer versions
of i0S, however, include a number of additional data
sources that more deeply expose private information,
including metadata that would be considered useless, even
for diagnostic purposes. The services by which this data is
transferred have not shown to be used by any legitimate
sync or diagnostic applications manufactured by Apple, and
in many cases even bypass Apple’s own user backup
encryption feature.

J. Zdziarski / Digital Investigation 11 (2014) 3-19 7

To illustrate, the following list of six data sources shows
the only sources available from iPhoneOS firmware version
2.0.0 (5A347). While iPhoneOS 2 only provided six un-
documented data sources, there are 44 known data sources
available as of i0OS 7 (explained in more detail in Section
3.7).

Data Sources available as of iPhoneOS version 2.0.0

AppleSupport
Network

WiFi

UserDatabases
CrashReporter
SystemConfiguration

Among some newer sources of data are a mechanism
to download an entire metadata disk image of the device
(a disk image of the entire file system, including time-
stamps, file names, file sizes, and more, but without the
actual file content), served up through a data source
named HFSMeta, the retrieval of cached GPS positioning
data through a special data source to transfer the loca-
tiond cache, the user’s calendar, a dump of the typing
cache, device pairing records, all third party application
data, and plenty of other data that should simply not be
allowed to come off the device without knowledge of
the user’s backup password. While no one would argue
that a user (or an Apple Store) may opt to backup basic
information on a device, one must ask why an undocu-
mented service exists to copy the same (and much more)
data than the backup conduit already does, but
bypasses the manufacturer’s own user encryption secu-
rity mechanism.

The file relay service’s job is to accept a list of
requested data sources, and deliver a gzippedcpio archive
of the data requested. Source code to talk to the file relay
service has been available since 2009 in the libimobile-
device project (A cross-platform software library and
tools to communicate with iOS devices natively), how-
ever the service has been available since the very first
versions of iPhoneOS. No known public software (Xcode,
iTunes, Apple Configurator, or others) appear to refer-
ence or use the file relay service, and as the data source
list grows, it becomes more evident that this service is
used to dump large amounts of decrypted personal
data (and metadata) from the device, far beyond any
diagnostic use (such as an Apple Store), and with capa-
bilities beyond the needs of backup or even software
development.

This service completely bypasses Apple’s built-in
backup encryption, and using the escrow key from a pair-
ing record, information that is normally encrypted is also
delivered in clear text. While Apple may have, at some
point, tapped a handful of these data sources for di-
agnostics or other purposes, it appears clear that a majority
of this data is far too personal to ever be used by Apple, or

for anything other than intelligence and law enforcement
applications.

To substantiate this notion, a number of applications
from Apple, including iTunes, Xcode, Apple Configurator,
Apple Configuration Management Utility, and others,
were examined for any traces of the file relay service,
and none were found. While one could conceivably
attempt to make an argument that such a service could
be used for in-store diagnostics, much of the data yiel-
ded by file relay is irrelevant to such a use, such as the
HFSMeta data source, or even services to acquire the
user’s entire desktop photo album. Additionally, the data
is transferred in a raw form that cannot be restored back
onto a replacement device, such as how a device backup
could, making it useless for in-store device repair or
replacement. Lastly, the file relay bypasses user backup
encryption — a security mechanism provided by Apple
to protect this same data. It would seem grossly inap-
propriate for an Apple Store to perform work on a device
to which the user had not given them a backup
password for, as is required for work on desktop ma-
chines, or to even be granted private access to a user’s
personal data without the customer’s direct consent, and
with their belief that their data was protected by a
password.

Data sources that can be requested from file relay
follow.

Accounts

A list of accounts configured on the device. This is
typically email accounts, although other types of accounts
could also exist. Account passwords are not included in this
data, but only the account identifiers.

AddressBook

An unencrypted copy of the user’s address book and
address book photos. These SQLite databases could poten-
tially include deleted records that can be recovered with
SQLite forensics tools.

Caches

The user’s Caches folder, located in/private/var/mobile/
Library/Caches. This folder contains screenshots taken
whenever preloaded applications are suspended,
revealing the last thing a user was looking at in each
application. They also contain a number of shared images
and offline web content caches, contents of the last copy
or cut to the clipboard (pasteboard), map tile images,
keyboard typing cache, and other records of personal
activity.

CoreLocation

GPS positioning logs. This is a cache of the device’s GPS
locations, taken at frequent intervals both by cellular and
WiFi. In iOS 6, the fileslockCache_encryptedA.db and
cache_encryptedA.db (neither of which are actually
encrypted) appear to be similar to older iOS 4 con-
solidated.db files that caused quite an uproar in the com-
munity a few years ago for caching so much data. Some

8 J. Zdziarski / Digital Investigation 11 (2014) 3-19

documents appear to indicate the NSA exploited (NSA
spies reportedly exploited iPhone location bug) these.
Examining the cache of a personal device running iOS 6,
there are over 500 cellular entries with some entries
containing locations that haven’t been visited in months,
and over 3000 WiFi location entries containing SSIDs of
neighboring access points including neighbors and nearby
businesses. This cache is used to help return a GPS position
based on WiFi, however the cache does still appear to hold
some historical information, rather than the seven days
advertised.

An agency capable of forcing manufacturers to add back
doors certainly also has the power to harvest this infor-
mation every seven days from the device, or possibly from
the manufacturer, so the time period for which this data
recycles is irrelevant.

EmbeddedSocial

Log files stored in/var/mobile/Library/Logs/Social. It is
assumed that this contains logs related to iOS’ embedded
social networking, such as Facebook and Twitter. No
further information is available yet, as this is a new service
to i0S 7.

GameKitLogs

Game Kit logs including existing games, enrollments,
account information, and other GameKit related data and
log files.

HFSMeta

A metadata disk image of the entire file system of the
device. That is, a disk image with everything except the
actual device content. Timestamps, file names, file sizes,
creation dates, and other metadata are all stored in
this image. This is a new data source added with iOS 7. The
image is transmitted as a sparseimage format file, which can
be mounted on a Mac by simply double clicking it.

Keyboard

Contents of the key cache; also referred to as the key
logger cache. These dictionaries contain both an ordered
list of the most recent things the user has typed into the
keyboard in any application, and a complete dictionary
and word count of all words that have been typed.
Regardless of whether the input was for SMS, Mail, an
App Store application, or any other application, the
contents of typed correspondence (including that typed
into otherwise secure applications) is copied into this
cache in the order in which it was typed (Zdziarski and
Media).

Lockdown

A copy of all pairing records (and their escrow bag)
stored on the device. This can be used to determine how
many and which computers a device has been synced or
paired with. The dump also contains a copy of the data
ark (a large registry of device information and general

operating parameters) and activation record. This data
can be used to determine when the device was last acti-
vated (evidence of a wipe, or restore), and determine
other device settings such as development state, backup
encryption, original setup time, device name, time zone,
the hostname and OS of the last desktop to backup the
device, and other settings. Additionally, if a pairing is
permitted while the device is locked, escrow keybags can
be recovered from this service to potentially unlock data-
protect enabled items from other data sources and
services.

MobileCal

A complete database dump of the user’s calendar and
alarms, as well as log files and preferences. These files are in
SQLite database format, allowing deleted entries to
possibly be recovered with SQLite forensics software.

MobileNotes

A copy of the user’s notes database, where everything is
stored in the Notes application, and the user’s note pref-
erences. These files are in SQLite database format, allowing
deleted entries to possibly be recovered with SQLite fo-
rensics software.

Photos
A copy of the user’s entire photo album stored on the
device.

SystemConfiguration

Contains a WiFi access point cache, containing time-
stamps and SSIDs of known networks and the last time
they were joined. Also contains information about config-
ured accounts network interfaces, and other configuration
information. This can, among other things, be used to place
the device on a given WiFi network at a given time. If future
i0S devices support fingerprint scanning, it could place an
individual at the scene of a crime, and not just their mobile
device.

Ubiquity

Contains diagnostics information about iCloud,
including information about peers that data is shared with.
There is also a chunk store database, which may contain
sensitive cached data. Conflicts created during iCloud syncs
appear to be logged as well, potentially leaking metadata
about the user’s iCloud content.

UserDatabases

A copy of the following user databases on the device:
address book, calendar, call history, SMS database, and
email metadata (envelope index). These files are in SQLite
database format, allowing deleted entries to possibly be
recovered with SQLite forensics software.

VARFS

A virtual file system metadata dump in statvfs format;
this will likely be phased out in the future, given the new
HFSMeta data source. The structure for this appears to be as
follow.

J. Zdziarski / Digital Investigation 11 (2014) 3-19

4 byte header structure (appears to be zeroes)

0x2c bytes
struct statvfs {
unsigned long f bsize; /* File system block size */

unsigned long f frsize; /* Fundamental file system block size */

fsblkent t f blocks; /* Blocks on FS in units of f frsize */
fsblkent t f bfree; /* Free blocks */

fsblkent t f bavail; /* Blocks available to non-root */
fsfilent t f files; /* Total inodes */

fsfilent t f ffree; /* Free inodes */

fsfilent t f favail; /* Free inodes for non-root */

unsigned long f fsid; /* Filesystem ID */
unsigned long f flag; /* Bit mask of values */
unsigned long f namemax;/* Max file name length */
}

foreach file {
4 bytes size t of filename to follow

N bytes filename

4 bytes size t fts parent (fts pointer)
0x10 bytes struct FTSENT->fts name[0] + 60

Possibly (struct FTSENT + 60):

void *fts_ pointer; /* local address value */
struct ftsent *fts parent; /* parent directory */
struct ftsent *fts link; /* next file structure */
struct ftsent *fts cycle; /* cycle structure */

struct stat *fts statp; /* stat (2) information */

10

Voicemail

J. Zdziarski / Digital Investigation 11 (2014) 3-19

The user’s voicemail database and audio files stored on
the device. Voicemail files are stored as AMR audio files; a
SQLite database provides information about call duration,
and caller metadata.

Other Data Sources that can be requested from the

File Relay:

AppleSupport Apple support logs

AppSupport The com.apple.AppSupport.plist configuration,
containing country codes for home and
network countries

AppleTV Apple TV playback logs. This suggests the data
is not intended for use in an enterprise
environment.

Baseband Baseband diagnostics logs

Bluetooth Bluetooth server logs

CrashReporter Application crash logs, typically submitted to
Apple

CLTM The files/var/logs/cltm.log and/var/logs/
tGraph.csv. Not much is known about these
files, as they do not exist on devices tested.

DataAccess Data access and migration diagnostics logs;
appears to be a list of accounts data is imported
from, and possibly metadata.

DataMigrator Data migrator diagnostics logs

demod Unknown

Device-o-Matic Device-o-Matic logs; Unknown

FindMyiPhone Find-my-iPhone logs. This data source is new
to i0S 7.

itunesstored Logs documenting the environment of the
user’s iTunes store experience.

IORegUSBDevice [ORegistry information. This is empty in iOS 7.

MapsLogs Map logs and query information, including the
NavTraces folder.

MobileAsset Installed asset configurations, such as text
input certificates and information, installed
dictionaries, and other related information.

MobileBackup Mobile backup agent logs containing
miscellaneous diagnostic information from the
backup agent.

MobileDelete This is a new data source for iOS 7 and appears
to store block cleanup logs, created by a
housekeeping service named librarian.

Mobilelnstallation A complete list of installed applications, as well
as a log containing information about
applications that have been previous installed/
uninstalled.

MobileMusicPlayer Contains airplay logs, including a list of airplay
devices that are available on the network.

NANDDebugInfo Very basic FTL (flash translation layer) debug
info.

Network PPP networking logs

SafeHarbor Returns the contents of the mobile user’s
SafeHarbor folder, which appears to be empty
on all test devices. This may be related to
Cisco’s VPN networking.

tmp Contents of the/tmp folder on the file system,
which is outside the sandbox and can
sometimes include sensitive information.

VPN Seemingly phased out, and combined with
other data sources, used to contain VPN logs.

WiFi General WiFi logs

WirelessAutomation Log files for coreautomationd

Other forensically relevant services

Other services yielding good forensic data on the device
include the following. All of these could potentially be

abused by an individual, agency, or malicious software with
a valid pairing record.

com.apple.iosdiagnostics.relay

Provides detailed network usage per-application, on a
per-day basis. The data provided details the amount of
network usage in Kilobytes for the past several days,
grouped by application identifier. This can be used to show
the activity of a particular user over a period of time, which
applications they transfer the most data from, and can help
to correlate potential evidence involving data transmitted
over a network.

com.apple.mobile.MClnstall

This service can be used to install managed configura-
tions, including those that contain additional data assur-
ance privileges, such as the ability to bypass certain
security mechanisms, locate the device using GPS, or wipe
the device.

com.apple.mobile.diagnostics_relay
Includes additional diagnostics information about the
device, such as battery and hardware state.

com.apple.mobile.heartbeat

Used to maintain a wireless connection to lockdown and
any services accessed. This service essentially performs a
simple heartbeat, and will cause all connectivity to the
destination to freeze unless a regular heartbeat is received.

com.apple.syslog_relay
Can be used to download and stream a device’s system
log, and many others.

Installation of invisible, malicious software

Malicious software does not require a device be jail-
broken in order to run. An attacker with the right know-
how and 20-30s with a trusted mobile device can
install malicious software capable of spying on the user. As
was demonstrated at this year’s Black Hat 2013 conference
in Las Vegas, the Mactans presentation (Lau et al.)
revealed what many in the community have known for
quite some time, but avoided discussing. With the simple
addition of an SBAppTags property to an application’s
Info.plist (a required file containing descriptive tags iden-
tifying properties of the application), a developer can
build an application to be hidden from the user’s GUI
(SpringBoard). This can be done to a non-jailbroken device
if the attacker has purchased a valid signing certificate
from Apple. While advanced tools, such as Xcode, can
detect the presence of such software, the application is
invisible to the end-user’s GUI, as well as in iTunes. In
addition to this, the capability exists of running an
application in the background by masquerading as a VoIP
client (How to maintain VOIP socket connection in
background) or audio player (such as Pandora) by add-
ing a specific UIBackgroundModes tag to the same property
list file. These two features combined make for the perfect
skeleton for virtually undetectable spyware that runs in
the background. If the device is rebooted, applications

J. Zdziarski / Digital Investigation 11 (2014) 3-19 1

tagged as VoIP applications are automatically invoked to
handle reconnection.

When an application runs in the background, it can
request up to 10 min of background execution time. There
is an exception to this, however, and that is for applications
that exhibit a form of activity through a VoIP socket or
while playing audio. An application need only establish a
socket with a remote server, and label the socket a VoIP
socket, in order for the application to receive execution
cycles automatically whenever data is pushed through the
socket. Even if the application is suspended in the back-
ground, a remote server transferring as little as one byte of
data through an open VolIP socket will cause the application
to become active again. This technique makes it possible to
receive virtually unlimited background cycles, albeit in
chunks of 10 min. Marking a socket as a VoIP socket can be
done using Apple’s built-in read and write stream property
statements.

CFReadStreamSetProperty (readStream,
kCFStreamNetworkServiceTypeVoIP) ;

as well as all other devices on networks that it joins. This
makes a tempting attack point for an agency looking to
infiltrate a high value target’s known WiFi networks, or to
attack associated targets.

Avery simple skeleton includes only two changes to the
application’s Info.plist file in order to make this possible
(Lau et al.; How to maintain VOIP socket connection in
background).

<key>SBAppTags</key>
<array>
<string>hidden</string>

</array>

<key>UIBackgroundModes</key>
<array>
<string>voip</string>

</array>

kCFStreamNetworkServiceType,

CFWriteStreamSetProperty (writeStream, kCFStreamNetworkServiceType,

kCFStreamNetworkServiceTypeVoIP) ;

Based on the Der Spiegel article, an agency such as the
NSA could easily use the device’s mobile installation service
to sign a malicious application with an enterprise certifi-
cate and install it on any target’s device without ever
registering that device through Apple’s developer program

At the very bare minimum, a payload could be pro-
grammed to execute every 10 min with the simple addition
of a VoIP connection handler. The handler would fire every
10 min, even if the device were rebooted (How to maintain
VOIP socket connection in background).

[[UIRApplication sharedApplication] setKeepAliveTimeout: 600 handler:” (void)

{

/* insert payload here */

(How: Gameboy Emulator finding it’s way onto non-
jailbroken devices; A cross-platform software library and
tools to communicate with iOS devices natively).

Such an application could include a payload of trans-
mitting personal data, taking screenshots, recording audio,
obtain geo-location information, or performing a number
of other spying tasks (Seriot, 2010). Additionally, the soft-
ware could be programmed to attack the device to which it
is running on, to obtain escalated privileges or other sen-
sitive information. In fact, Apple has recently beefed up this
type of security as of iOS 7 to prevent a device from con-
necting to its own lockdown port, as was allowed in all
prior versions of iOS. Lastly, an application running on a
user’s device could be manipulated to attack other devices
on the network, either with exploit frameworks, or by
attempting to connect to other iOS devices’ lockdown ports
over WiFj, if the agency had previously copied pairing re-
cords from a subject’s desktop machine. While there is no
evidence to show that this has ever occurred, the possibility
exists for an agency that can infiltrate desktop machines to
install software that could attack the device it is running on,

An application using this skeleton would be virtually
undetectable by the average user. It would not appear in
iTunes or on the user’s SpringBoard. Additionally, a
managed configuration could be loaded onto the device to
prevent the deletion of applications should it ever be
discovered. The only way to detect this type of application
is to use Xcode’s developer tools to browse the applications
installed in the device’s sandbox, of which such an appli-
cation would be listed.

If the device is jailbroken, malware can be made much
more invisible and elusive, embedded into operating sys-
tem components, and virtually undetectable even to some
experts.

Fingerprint/passcode pairing security override

Introduced with iOS 7 was a new security mechanism to
help thwart juice jacking. This was a good step forward in
terms of pairing security, and ensured that any device
attempting to establish a trusted relationship with the
device had to be explicitly authorized by the user, through

12 J. Zdziarski / Digital Investigation 11 (2014) 3-19

means of tapping a “Trust” button. With this feature,
plugging an iOS device into someone’s laptop, or a mali-
cious charger or other device, would cause a confirmation
screen to require the user first trust the device before
granting privileged access. This feature would, if correctly
functioning, prevent an attacker from establishing a new
pairing relationship with a targeted device, limiting their
capabilities so that they would have to steal an existing
pairing record from a desktop machine, which is not always
feasible. In addition to this, such a feature would potentially
interfere with more clandestine (black bag) approaches to
establish pairing with and access high profile targets’ de-
vices in the field (such as a hotel or bar), where a paired
desktop may not be available, would be limited by iOS 7’s
new security feature.

With this new feature, and with the introduction of
fingerprint locking mechanisms for newer iOS devices
(making it difficult to turn over a “password” to an enter-
prise upon leaving the company), also comes an apparent
bypass to the device locking mechanism, which overrides
the device’s passcode/fingerprint lock and user trust checks
completely, allowing the device to be paired, synced, and
possibly unlocked later with the user’s original escrow bag,
which can be obtained through the file relay service on the
device. This allows the device to be paired not only without
authorization from the user, but also while locked with a
passcode or a fingerprint. While this feature remains un-
documented as of the date of this paper, it is presumed that
the purpose of this bypass mechanism is to service legiti-
mate enterprise owned devices enrolled into a managed
profile, so that an employee’s device can be forensically
acquired after leaving the company, are incapacitated, or
unwilling to provide their fingerprint or password to un-
lock the device. The mechanism which allows the bypass to
be engaged performs a check to ensure that the supervisor
certificates provisioned on the device match that of the
supervisor attempting to bypass the lock. This feature is
present in iOS 7’s public release.

Apple’s new over-the-air (OTA) supervision and auto-
matic enrollment for iOS 7’s MDM (iOS 7 and business)
would appear to allow enterprise or government-owned
devices to be configured out of the box with a set of re-
strictions upon activation. Additionally, later enrollment
into an enterprise MDM could potentially also enable this
security bypass mechanism to permit corporate access to
any device that has been enrolled.

In short, there appear to be two ways to apply a cloud
configuration to an iOS 7 device: through enrolling the
device with an enterprise MDM (using an existing paired
connection), or over-the-air through Apple’s servers, at the
time of activation.

Centrally managed cloud configuration

The pairing security bypass is tied to the Managed
Configuration (MC) portions of the operating system,
which touch, but also operate independently of systems to
enroll and manage mobile device management (MDM)
restrictions for an enterprise. The actual data to activate the
bypass is stored in a class named MCCloudConfiguration. A
managed configuration can be written through the device’s

public facing MDM service com.apple.MClnstall, with
proper pairing authentication, or written directly from
code running on the device, such as configuration dae-
mons, or any other process with privileged (root) access.

The managed configuration framework includes a
daemon named teslad, which has what appear to be direct
hooks into Apple’s servers for the loading of managed cloud
configurations (the configuration containing— among other
restrictions — the pairing security bypass). The teslad
daemon, part of the Managed Configuration framework,
downloads a cloud configuration certificate from https://
iprofiles.apple.com/resource/certificate.cer, and performs a
number of different validations against sessions (https://
iprofiles.apple.com/session) and profiles (from https://
iprofiles.apple.com/profile) between the device and a
configuration service referred to as Absinthe, hosted on
Apple servers. The daemon identifies itself with an HTTP
User-Agent of ConfigClient-1.0 to the server.

It is worth noting that a successful MiTM combined with
a certificate forgery (both presumed to be within the reach
of government agencies such as NSA), that all signing could
potentially become compromised. Code already exists in
the public to emulate an Apple policy server, which could
be used to change the device’s policy (The i0OS MDM
protocol). This may not even be necessary, however, as a
suspicious switch appears to already exist to disable cer-
tificate verification over the HTTPS connection. The
- [MCTeslaConfigurationFetcher connection:will
SendRequestForAuthenticationChallenge:]
method checks for a configuration directive named
MCCloudConfigAcceptAnyHTTPSCertificate, and if set,
will automatically bypass the server trust process, effec-
tively allowing any web server to masquerade as Apple’s
Absinthe server.

The teslad daemon suggests that Apple has the ability to
centrally load a managed configuration onto a device, when
invoked. The daemon’s

- [MCTeslaConfigurationFetcher convertCloud
ConfigDictionary: toManagedConfiguration:]
method allows data transferred across the network
connection as an NSDictionary object to be converted
into a managed configuration, where it is sent back to the
client that requested the configuration. The only client
identified thus far is Apple’s Setup program on the device.
Apple’s Setup program attempts to set up a cloud config-
uration when the device is first activated, inside the
method named. - [ActivationController _fetch-
CloudcConfig]l. If a cloud configuration is written when the
device is first activated, it can be programmed to later
check in at regular intervals for changes to the policy.

Once an MDM is installed, a check-in mechanism is
invoked via APNS (Apple Push Notification Service) to apply
new management changes (The iOS MDM protocol). The
profile can later be updated remotely through a mechanism
that pulls a new cloud configuration from a URL. A new cloud
configuration can be downloaded by invoking the
- [MCProfileConnectionretrieveCloudConfiguration
FromURL:username:password:anchorCertificates:
completionBlock:] method. HTTP based managed
configuration makes for a delicate attack surface for NSA to
target, at best.

https://iprofiles.apple.com/resource/certificate.cer
https://iprofiles.apple.com/resource/certificate.cer
https://iprofiles.apple.com/session
https://iprofiles.apple.com/session
https://iprofiles.apple.com/profile
https://iprofiles.apple.com/profile

J. Zdziarski / Digital Investigation 11 (2014) 3-19 13

Possible uses

While it is likely that Apple has added this feature
exclusively for legitimate use by enterprises, even this has
some serious implications: with today’s BYOD culture,
employees may be unknowingly allowing their personally-
owned devices to be forensically accessible to a company’s
internal investigations team (as well as law enforcement,
with the enterprise’s consent) by simply enrolling it into
the corporate MDM environment. Additionally, new em-
ployees issued devices may be permitted to retain personal
information on their corporate device without first being
informed that their devices could, at any time, be subject to
a search that bypasses security.

In addition to potential abuse by the enterprise, an
agency seeking to commit espionage could potentially set
up their own MDM profile and enroll the device from a
compromised desktop, using services running under the
device’s lockdown. The advantage of this would be to take
advantage of an otherwise short-term connection with the
desktop to enroll the device itself into an MDM. When
installed, MDMs can also be configured to be removable
only with a passcode.

It is speculative, however worth mentioning, that
select law enforcement agencies could potentially also be
granted a mechanism to push such a configuration to a
device through Apple’s configuration server, or through
other means, but possibly only at the time the device is
provisioned (post purchase or firmware upgrade). Given
Apple’s recent patent filing to allow certain restrictions to
be wirelessly pushed to devices in secure government
facilities (Apparatus and methods for enforcement of
policies upon a wireless device), it's conceivable that
such restrictions overlap with the same managed
configuration interfaces. If Apple has developed the
capability to push a camera restriction to devices that are
not enrolled in an MDM, then it is also possible that they
may have developed the capability to push security by-
passes as well, for purposes such as InfoSec enforcement
at military installations, or under subpoena. No evidence
has been found supporting that this has actually
occurred, however.

Given recent articles of Apple deluged by requests to
image mobile devices for law enforcement (Apple deluged
by police demands to decrypt iPhones, 2013), providing
limited law enforcement access to such a bypass could be
beneficial for Apple, by providing a mechanism to remotely
unlock a device for a specific purpose, where it can be
forensically acquired by existing commercial tools. The
benefit for Apple to do this would be to lighten the load and
cost involved with manually processing subpoenas for data
acquisition, to which Apple has reportedly been months
behind (Apple deluged by police demands to decrypt
iPhones, 2013). Again, however, such a mechanism would
be required to be pushed from a trusted supervisor, and so
its success would greatly depend on how the device was
provisioned by testlad out of the box, or later provisioned
by an enterprise.

Lastly, due to the MCTestlaConfigurationFetcher
mechanism, which looks for a managed configuration at
device setup time, it is interesting to note that, were a

government agency (such as NSA) and Apple cooperating
on this level, it is plausible that Apple could provision
any device as a supervised device fresh out of the box
using this mechanism. This would allow for the agency to
potentially target a subject in such a way that whenever
the subject either upgraded their device or restored an
existing one, that it would be automatically provisioned
as a supervised device when it was set up. With this kind
of collusion, the supervisor could monitor, and even
install software on the subject’s device without their
knowledge or approval, in the same way that the
mechanism is seemingly already used to allow this
functionality for enterprises looking to perform bulk
provisioning.

Anatomy

As mentioned earlier in this article, the lockdownd
process is responsible for performing all pairing and
authentication of new connections, before allowing new
services to be spawned. Previous versions of i0OS would
deny pairing of locked devices with the error Password-
Protected. Looking at iOS 7’s lockdownd daemon, two new
branch instructions have been added to bypass this
check.

The code segment just shown depicts part of the secu-
rity check performed inside lockdownd when a pairing is
requested. At the beginning of the code segment, a sub-
routine inside lockdownd (sub_1F100, actually named
mc_allow_pairing) is called, which in turn invokes the
— [MCProfileConnection hostMayPairWithOption-
s:challenge:] method inside of Apple’s managed
configuration framework. This check results in one of four
possible actions.

Deny all pairing

Allow pairing, but prompt the user

Allow pairing with no user prompt (and while locked)
Allow pairing with a challenge/response

The results are returned into three different variables;
one as a return value from the subroutine, and two
assigned to variables whose pointers are passed into
mc_allow_pairing as arguments. These three variables
indicate whether pairing is allowed at all, whether pairing
security should be completely bypassed, and whether
pairing should require a challenge/response.

Between the call to mc_allow_pairing at 193A6 and the
code at 193D8 (which denies pairing if the device is locked
with a passcode, or later on if the user doesn’t approve it),
are two bypasses. One of these bypasses is significant. The
branches to 19B06 (from 193C0) effectively “skips over”
pairing security entirely if the call to mc_allow_pairing
allows pairing with no user prompt. This is determined
from instructions within the hostMayPairWithOptions
method, which obtains information from the device’s
cloud configuration, and performs a type of X509 certifi-
cate based validation to ensure the bypass is authenti-
cated with the proper credentials. The source of this
certificate is unknown, but assumed to be related to an

J. Zdziarski / Digital Investigation 11 (2014) 3-19

; Check —-[MCProfileConnection hostMayPairWithOptions:challenge:]

_ text:0001938E LDR.W RO, [R8,#0xC]

_ text:00019392 BL sub_5754

~ text:00019396 CMP RO, #0

_ text:00019398 BNE.W loc_19AAS8

~ text:0001939C LDR.W R1, [R8,#0x1C]

_ text:000193A0 ADD R2, SP, #0x7E8+var 420
_ text:000193A2 ADD R3, SP, #0x7E8+out

_ text:000193A4 MOV RO, R4

_ text:000193A6 BL sub_1F100

; Pairing is explicitly forbidden by MC
_ text:000193AA CMP RO, #0
_ text:000193AC BEQ.W loc 19ABO

; Pairing is allowed by MC, but with challenge/response

_ text:000193B0O LDRB.W RO, [SP,#0x7E8+out]
_ text:000193B4 CMP RO, #0
_ text:000193B6 BNE.W loc_19AC2

; Pairing is allowed by MC while locked / untrusted without

; any challenge/response (pairing security is bypassed)

_ text:000193BA LDRB.W RO, [SP,#0x7E8+var 420]
_ text:000193BE CMP RO, #0
~ text:000193CO BNE.W loc_19B06

; Pairing is allowed while locked / untrusted if the device

; doesn’t support it

_ text:000193C4 MOV RO, #(cfstr Hasspringboa 1 -
0x193D0) ; "HasSpringBoard"

~ text:000193cCC ADD RO, PC ; "HasSpringBoard"

_ text:000193CE BLX _MGGetBoolAnswer

_ text:000193D2 CMP RO, #1

_ text:000193D4 BNE.W loc_19B06

; Actual pairing security routines (check device lock, whether

; user has pressed “Trust”, and so on)

_ text:000193D8 MOVS RO, #0

_ text:000193DA BLX _MKBGetDeviceLockState
_ text:000193DE MOV R3, RO

~ text:000193E0 SUBS RO, R3, #1

_ text:000193E2 CMP RO, #2

_ text:000193E4 BCS.W loc_19ADE

_ text:000193E8 LDR.W RO, [R8]

~ text:000193EC MOVS R1, #1

~ text:000193EE BL sub 14FEQ

_ text:000193F2 MOVS R6, #0

~ text:000193F4 B.W loc 19EF2

J. Zdziarski / Digital Investigation 11 (2014) 3-19 15

MDM certificate. Once the certificate passes validation,
the bypass is enabled. When this occurs, the lock state of
the device is never checked, and the user is never
prompted to trust the host it is connected to. The code
branches to the same location that the bypass at 193D4
branches to if pairing security is not supported (for
example, on an AppleTV or other device without a screen
lock).

A look inside of the ManagedConfiguration framework
inside Apple’s shared cache shows that the decision to
bypass pairing security is based, in part, on certificate data
retrieved from a call to [[MCProfileConnection
sharedConnection 1 cloudConfigurationDetails
1.Since i0OS 7 does not yet have a jailbreak, it’s difficult to
determine just what information is stored in this
configuration.

If pairing security is overridden through this mecha-
nism, then both the user trust prompt and the device lock
test are bypassed, allowing the device to continue pairing,
even if a passcode is set. The logic, in pseudocode, works as
follows.

if (mc_allows_any pairing == false)

error (PasswordProtected) ;

if (mc_allows pairing while locked ||

goto skip device lock and trust checks;

/* Pairing Security */

if (device is locked == true) {

if (setup has completed) {

if (user never pushed trust)

Suspicious design omissions

While inconclusive, it is worth noting that the iOS
operating system has noticeable omissions in the design of
the security architecture, which severely degrade the per-
formance of otherwise “good” security implementations.
The most notable of these are outlined in this section.
Ironically, these design omissions are well within the grasp
of the manufacturer to implement, likely with little effort in
comparison to the rest of the design. It is unknown whether
these omissions are the direct result of pressure from a
government agency, or simply poor design choices, how-
ever it is difficult to grasp how a team of engineers that are
bright enough to have designed such an impressive system
could have intentionally missed such significant issues that
are detrimental to its security, lending to speculation that
their omission may be intentional.

It is often mistaken that the iOS operating system de-
livers the same level of security as its desktop counterpart
(OS X). Such design omissions do not appear in the desktop
operating system.

{ /* MDM prevents any pairing */

device has no_springboard gui) {

/* Skip security */

{

error (PasswordProtected) ;

/* Bypass ... */

skip device lock and trust checks:

pairing process continues

At it's very best, the device security bypass is an un-
documented MDM feature allowing enterprises to access
any enrolled (or over-the-air enrolled) i0OS MDM device.
Even this, however, creates a significant threat to the se-
curity of the many iOS users working for companies with a
BYOD policy.

(validate host challenge,

etc)

Boot-stage disk key left unprotected

The iOS file system depends on a key hierarchy, whose
top tier keys are stored in the effaceable storage (block
zero) of the NAND. This allows for quick data destruction;
by simply overwriting these top tier keys, the entire file

16 J. Zdziarski / Digital Investigation 11 (2014) 3-19

system becomes unrecoverable. One significant design
omission in this mechanism is a means of protecting the
top tier keys with a user secret, and those top tier keys
protect any files that are not explicitly protected with one
of the NSFileProtectionComplete classes. Unlike the data-
protection class keys, protected with a user passphrase,
the top tier keys are protected using a key derived from
hardware-based information. This design omission results
in a majority of user data from the file system at risk of
exposure to an attacker with code-execution privileges or
the ability to extract and deduce the hardware-based keys.
This ability to gain code execution is what rendered virtu-
ally unlimited access to data at rest for all iPhone 4 and
older devices. The design places a significant portion of user
data at risk from threats including a number of jailbreak
and forensics tools, possessors of zero-day code-execution
exploits, and the manufacturer (Apple), who has code
signing authority to boot such code on the device.

The encrypted iOS file system causes unique file keys to
be generated for every file on the device. These unique file
keys are then encrypted and protected in one of two ways.
Files marked as protected using data-protection are pro-
tected with a key from the file system keybag, which must
be unlocked either by the user’s passphrase, or the escrow
key from a backup key (if the device has not been rebooted
since it’s last unlock). The second method (and how all files
not protected with data-protection encryption are pro-
tected) is to protect the file with a key stored in the
effaceable storage, referred to as the Dkey (or class-4
key).This Dkey is itself encrypted using keys calculated
from the device’s unique hardware. No publicly available
methods have been found to deduce the hardware keys
from the device, however a running kernel can decrypt the
file system when the device is booted, allowing anyone
with code-execution capabilities to access the large portion
of the file system that is not protected with data-protection.

It is unknown whether or not the manufacturer has
been (or could be) forced, under secret court order, to
provide one or more law enforcement branches with the
ability to execute a running kernel with custom code,
however Apple is known to provide services to law
enforcement to provide an image of the file system, sans
what Apple deems, “encrypted files”, which are believed to
refer to files using data-protection.

The ability to decrypt the class-4 portions of the file
system provide an attacker the capability of acquiring a
significant amount of user data from the device, as only a
small portion of the file system typically uses data-
protection. To add to this exposure, however, backups of
the keybag keys are stored in an escrow record whenever
a pairing record is created with a desktop machine, and
can be used to unlock the keybag IF the device has not
been rebooted since its last device unlock by the user,
subsequently decrypting data that would otherwise be
protected with data-protection. This escrow bag is
accessed in the directory/private/var/root/Library/Lock-
down/escrow_records on the mobile device, and is only
encrypted with the Dkey. With an escrow record, it is
possible to unlock the keybag on the device and access the
remaining files protected with data-protection, however
the lockdownd services running on the device will do this

for the user automatically, whenever an escrow bag is
supplied in lockdownd requests. Exploiting this requires
only that at least one device was ever paired with the
mobile device. This technique is not possible unless the
device has - at some point since its last reboot - been
unlocked, to satisfy the NSFileProtectionComple-
teUntilFirstUserAithentication protection of the keybag it-
self. Black bag techniques involving theft, desktop
penetration, and other such types of attacks, however may
be possible while the device is in this state.

In contrast, Apple’s desktop implementation (File Vault)
protects the file system key hierarchy with a key that is
derived from a user-supplied passphrase on boot. When
implemented properly, only a small portion of boot code
lies unencrypted on disk, which then accepts a passphrase
in order to unlock the rest of the file system. As a result of
this design, the disk encryption provided by File Vault is
hardware independent (portable), and is instead depen-
dent on a secret supplied by the user.

The more secure full disk encryption implementation
provided by File Vault could have easily been incorporated
into iOS, in one of two ways. The iOS boot loader (iBoot)
could prompt the user for a passphrase whenever the
mobile device is rebooted, or an additional key tier could
have been added to the operating system firmware in such
a way that a key derived from a user passphrase Keyyser
were prompted for at boot, and incorporated into the file
system keys of the user data partition of the device. This
would have resulted in the root partition (which is, by
default, read-only) being readable at the time of boot (via
Dkey), and the user data partition being readable only after
f(Dkey|Keyyser) could be calculated. Since the user data
partition is the only partition that either requires or uses
disk encryption, the operating system could, today,
completely boot and prompt the user for a passphrase prior
to mounting any user data.

This design omission has made it possible for Apple to
service law enforcement subpoenas to provide a disk image
of the user file system, however this has been at the
expense of considerable data security, as evidenced by the
number of forensics tools capable of performing physical
acquisition of past devices, and the expectation that current
and future devices will be (or have been) compromised in a
similar fashion.

Packet sniffing services not moved to developer mount

When developer-mode services were added to iOS, a
number of services were moved to a remote disk that was
mounted to install developer tools on the device. By
default, these services are not installed or running on the
device, but later installed by developers using Xcode, when
the “Use for Development” option is selected with a given
device. The packet sniffer service (com.apple.pcapd),
whose only practical legitimate use is for developer in-
spection of packet data, was not moved, and is therefore
active on every iOS device, including those that have never
been configured for developer mode. One can only specu-
late as to why a service to capture and analyze packet data,
either over USB or WiFj, is active on all devices running
recent versions of iOS.

J. Zdziarski / Digital Investigation 11 (2014) 3-19 17

Apple can solve this problem immediately by removing
the pcap service from the operating system entirely, or
installing it only when a device is placed in developer
mode.

Lack of adequate pair purging

When i0S 7 shipped, a new trust dialog was added so
that a user must authorize all attempts to establish a
pairing. This appeared in Apple’s change log immediately
after Lau et al. was announced, exploiting the lack of pair-
ing security on iOS devices. From 2007 to 2012, however, all
iOS devices lacked this basic pairing security function,
allowing any malicious device to establish a semi-
permanent pairing. Prior demonstrations (Beware of juice
jacking) had been given at security conferences, however,
showing the concept of “juice jacking” to gain access to a
user’s data by masquerading a malicious device as a legit-
imate one (such as an alarm clock). What the public may
not have realized at the time was that such techniques
allow potentially permanent and unfettered access to user
data, over both USB and WiFi. Unfortunately, today users
are being trained by third party products (such as FM
transmitters, and third party chargers) to press Trust in
order to achieve the functionality they desire, even though
it should be unnecessary.

In addition to the lack of adequate pairing authentica-
tion, even iOS 7’s internal lockdown daemon shows evi-
dence of a new mechanism to reset the pairing on the
device, however this reset mechanism can only be accessed
from a privileged process running on the device itself, and
cannot be triggered over USB or WiFi. As of this writing, no
operating system component exists to actually take
advantage of this mechanism to allow the user to reset the
pairing on the device, which could be used to destroy any
rogue pairings established on the device. Lack of this
mechanism being functional, all device pairings remain on
the device until the device is restored.

Apple can solve this problem immediately by adding a
feature to iOS’ settings to review and selectively (or
completely) reset pairing.

Other bugs seem to persist with respect to pairing se-
curity. Supervised devices, whose pairing can be disabled,
appear to occasionally allow pairing when connected to
devices in certain states (such as certain desktop that are
still in the process of booting). These bugs have yet to be
weeded out by the manufacturer, however could poten-
tially allow pairing even when restricted by corporate
policy.

Lack of pairing record pinning

As was noted earlier in Boot-stage disk key left
unprotected section, pairing records contain an escrow
key capable of unlocking the keybag on the device; these
escrow keys are not only stored unencrypted on the device
itself, but also stored unencrypted on the desktop machines
they are paired with. By failing to wrap the pairing record
with any form of user passphrase on either side, attackers
compromising desktop machines, such as appears the case
with individuals targeted by NSA, are able to copy and steal

the pairing relationship with any mobile devices the
desktop is paired with.

Apple could solve this problem immediately by
providing an optional mechanism to encrypt pairing record
keys with a user passphrase, such that a user must enter a
passphrase the first time they sync with the device after
reboot. If implemented, this would prevent the theft of
pairing record data while at rest from both malware and
attackers.

Lack of geofencing in fingerprint reader

The iPhone 5s introduced a fingerprint reader as a
means of authenticating the user on a device. Because a
user’s biometrics are not considered protected in the same
way as a password by the US Fifth Amendment (as far as
the courts are concerned), a user can (in many cases) be
legally compelled to authenticate their fingerprint on the
device. Additionally, with a few thousand dollars of
equipment, the fingerprint reader can be defeated
(German hackers allegedly break touch ID fingerprint
scanner) with a fingerprint lifted from the device, or
another source. Most fingerprint labs already possess the
required equipment to manufacture a print. This mecha-
nism, when used, poses a significant risk of those who are
targeted by an attacker or a government (including a
foreign government) seeking access to the data on the
device. While certain safeguards do exist, such as requiring
a passcode after 48 h or after reboot, Apple has not
included a capability to disable the fingerprint reader
when the user leaves a specific radius.

Apple could solve this problem by incorporating a
mechanism to add a geofence into the operating system, so
that a fingerprint reader will permanently disable until a
passcode is supplied, if the user leaves areas they deem as
“secure” locations. In order to make this effective, the
operation of the fingerprint reader should only be disabled,
and never enabled when entering the perimeter of the
geofence.

Integrity of iMessage

In October 2013, Quarkslab exposed design flaws
(iMessage privacy) in Apple’s iMessage protocol demon-
strating that Apple does, despite its vehement denial,
have the technical capability to intercept private iMes-
sage traffic if they so desired, or were coerced to under a
court order. The iMessage protocol is touted to use end-
to-end encryption, however Quarkslab revealed in their
research that the asymmetric keys generated to perform
this encryption are exchanged through key directory
servers centrally managed by Apple, which allow for
substitute keys to be injected to allow eavesdropping to
be performed. Similarly, the group revealed that certifi-
cate pinning, a very common and easy-to-implement
certificate chain security mechanism, was not imple-
mented in iMessage, potentially allowing malicious
parties to perform MiTM attacks against iMessage in the
same fashion. While the Quarkslab demonstration
required physical access to the device in order to load a
managed configuration, a MiTM is also theoretically

18 J. Zdziarski / Digital Investigation 11 (2014) 3-19

possible by any party capable of either forging, or
ordering the forgery of a certificate through one of the
many certificate authorities built into the iOS TrustStore,
either through a compromised certificate authority, or by
court order. A number of such abuses have recently
plagued the industry, and made national news (Another
certificate authority issues dangerous certificates;
Digital certificate authority hacked; Mozilla toughens
up on CA abuse).

Apple’s response to Quartkslab’s research has been
continued denial of the technical capabilities to or the
desire to intercept iMessage traffic, however the technical
details of the report have been validated by a number of
independent security researchers. Because any organiza-
tion that is compelled to perform surveillance on its cus-
tomers is likely also under a court order to keep such
activities confidential, the technical revelations alone are
enough to potentially damage trust in the confidentiality of
Apple’s services; with today’s secret government surveil-
lance operations, the only way to truly gauge security is by
the quality of the technology. In this case, there appear to
be not only flaws, but potentially suspicious flaws, further
chipping away at Apple’s credibility in securing iMessage.

The design flaws in the iMessage protocol are suspicious
to the degree that certificate pinning is a feature already
built into the iOS operating system for App Store de-
velopers, and has been made very easy to implement by
Apple, yet is not implemented in Apple’s own software. A
reasonable amount of Apple documentation even exists to
describe the process by which a developer can implement
pinning. It was, as it seems, that Apple is not eating their
own dog food. The overall design and use of a centrally
managed key directory further calls into question the
integrity of the iMessage system, as Apple’s implementa-
tion allows for the most classic form of MiTM to be per-
formed; a technique has been well known in information
security for decades.

Quarkslab has introduced a counter-surveillance tech-
nique to help mitigate the risk of iMessage surveillance, by
monitoring the public keys for changes. The iMITMProtect
tool attaches to the imagent process and intercepts keys
sent by Apple’s key server. If a public key ever changes
(which should not happen), the tool will alert the user that
their communication may be the target of compromise, and
will serve up a cached copy of the public key to allow for
continued secure communication with the endpoint. This
mechanism will identify and help combat most types of
MiTM event, except in cases where a key is compromised
from the point of initial exchange. Such an attack would
only likely be possible if Apple were substituting keys for
one or all users from the moment they are first generated.
While a good monitoring and counter-surveillance tool,
this is not a complete solution.

Apple could greatly improve the overall security of
iMessage. A number of instant messaging protocols incor-
porate perfect forward security (PFS), which can be used to
establish encrypted sessions in an untrusted environment,
even if one party’s keys are exposed. Because Apple hosts
the keys for both parties on a centralized server, moving
key generation and storage closer to the end-user, as
instant messaging application do, can greatly improve the

security of iMessage. The Diffie-Hellman key exchange is a
well known and accepted protocol for performing crypto-
graphic key exchange over an insecure channel, and is
incorporated by PFS. Finally, implementing the certificate
pinning mechanism that Apple, themselves, have already
provided for developers, would greatly reduce the likeli-
hood of a MiTM attack using a rogue certificate, or other
means.

Overall, the design flaws of iMessage appear to be valid,
however the question remains of whether these design
flaws were actually mistakes in the design, or omissions
intentionally left out of the design.

References

A cross-platform software library and tools to communicate with i0OS
devices natively. http://www.libimobiledevice.org.

Another certificate authority issues dangerous certificates. http://
nakedsecurity.sophos.com/2011/11/03/another-certificate-authority-
issues-dangerous-certficates/.

Apparatus and methods for enforcement of policies upon a wireless de-
vice. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=
HITOFF&u=/netahtml/PTO/search-adv.htm&r=36&p=1&f=G&I=
50&d=PTXT&S1=(20120828.PD.+-AND+Apple.ASNM.http://patft.
uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=/neta
html/PTO/search-adv.htm&r=36&p=1&f=G&I=50&d=PTXT&S1=
(20120828.PD.+AND-+Apple.ASNM.)&0S=ISD/20120828+AND+AN/
Apple&RS=(ISD/20120828-+AND-+AN/Apple).

Apple deluged by police demands to decrypt iPhones. http://news.cnet.
com/8301-13578_3-57583843-38/apple-deluged-by-police-demands-
to-decrypt-iphones/; May 2013.

Bédrune Jean-Baptiste, Sigwald Jean. iPhone data protection in depth.
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamster
dam-iphonedataprotection.pdf; http://code.google.com/p/iphone-data
protection/.

Beware of juice jacking. http://krebsonsecurity.com/2011/08/beware-of-
juice-jacking/.

25C3: hacking the iPhone; 2008; http://theiphonewiki.com/wiki/25C3_
presentation_%22Hacking_the_iPhone%22.

Digital certificate authority hacked. http://www.darkreading.com/
attacks-breaches/digital-certificate-authority-hacked-doz/
231600498.

EvasiOn jailbreak. http://www.evasiOn.com.

German hackers allegedly break touch ID fingerprint scanner. http://
www.ibtimes.com/apple-iphone-5s-defeated-german-hackers-
allegedly-break-touch-id-fingerprint-scanner-video-1409584.

Hacking i0OS applications. http://archive.hack.lu/2012/Mathieu%
20RENARD%20-%20Hack.lu%20-%20s:Hacking%20i0S%
20Applications%20v1.0%20Slides.pdf.

How did Scarlett Johansson’s phone get hacked?. http://gizmodo.com/
5841742 /how-did-scarlett-johanssons-phone-get-hacked.

How the NSA cracked the web. http://www.newyorker.com/online/blogs/
elements/2013/09/the-nsa-versus-encryption.html.

How the NSA spies on smartphones including the BlackBerry. Der Spiegel.
http://www.spiegel.de/international/world/how-the-nsa-spies-on-
smartphones-including-the-blackberry-a-921161.html.

How to maintain VOIP socket connection in background. http://
stackoverflow.com/questions/5987495/how-to-maintain-voip-
socket-connection-in-background.

How: Gameboy Emulator finding it's way onto non-jailbroken devices.
http://www.imore.com/how-gameboy-emulator-finding-its-way-
non-jailbroken-devices.

iMessage privacy. http://blog.quarkslab.com/imessage-privacy.html.

i0S 7 and business. http://www.apple.com/ios/business/.

iPhone users are all zombies. http://www.theregister.co.uk/2013/09/09/
fanbois_the_nsa_thinks_youre_all_zombies/.

Lau Billy, Yeongjim Jang, Chengyu Song, Tielei Wang, Pak ho Chung, Royal
Paul. Mactans: injecting malware into iOS devices via malicious
chargers. In: Black Hat 2013. Georgia Institute of Technology. https://
media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-
into-i0S-Devices-via-Malicious-Chargers-WP.pdf.

Miller Charlie, Blazakis Dion, Zovi Dino Dai, Esser Stefan, lozzo Vincenzo,
Weinmann Ralf-Phillip. iOS hacker’s handbook. Wiley. ISBN 978-
1118204122.

http://www.libimobiledevice.org
http://nakedsecurity.sophos.com/2011/11/03/another-certificate-authority-issues-dangerous-certficates/
http://nakedsecurity.sophos.com/2011/11/03/another-certificate-authority-issues-dangerous-certficates/
http://nakedsecurity.sophos.com/2011/11/03/another-certificate-authority-issues-dangerous-certficates/
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=/netahtml/PTO/search-adv.htm%26r=36%26p=1%26f=G%26l=50%26d=PTXT%26S1=(20120828.PD.+AND+Apple.ASNM.)%26OS=ISD/20120828+AND+AN/Apple%26RS=(ISD/20120828+AND+AN/Apple)
http://news.cnet.com/8301-13578_3-57583843-38/apple-deluged-by-police-demands-to-decrypt-iphones/
http://news.cnet.com/8301-13578_3-57583843-38/apple-deluged-by-police-demands-to-decrypt-iphones/
http://news.cnet.com/8301-13578_3-57583843-38/apple-deluged-by-police-demands-to-decrypt-iphones/
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://code.google.com/p/iphone-dataprotection/
http://code.google.com/p/iphone-dataprotection/
http://krebsonsecurity.com/2011/08/beware-of-juice-jacking/
http://krebsonsecurity.com/2011/08/beware-of-juice-jacking/
http://theiphonewiki.com/wiki/25C3_presentation_%22Hacking_the_iPhone%22
http://theiphonewiki.com/wiki/25C3_presentation_%22Hacking_the_iPhone%22
http://www.darkreading.com/attacks-breaches/digital-certificate-authority-hacked-doz/231600498
http://www.darkreading.com/attacks-breaches/digital-certificate-authority-hacked-doz/231600498
http://www.darkreading.com/attacks-breaches/digital-certificate-authority-hacked-doz/231600498
http://www.evasi0n.com
http://www.ibtimes.com/apple-iphone-5s-defeated-german-hackers-allegedly-break-touch-id-fingerprint-scanner-video-140%20
http://www.ibtimes.com/apple-iphone-5s-defeated-german-hackers-allegedly-break-touch-id-fingerprint-scanner-video-140%20
http://www.ibtimes.com/apple-iphone-5s-defeated-german-hackers-allegedly-break-touch-id-fingerprint-scanner-video-140%20
http://archive.hack.lu/2012/Mathieu%20RENARD%20-%20Hack.lu%20-%20%EF%BF%BCHacking%20iOS%20Applications%20v1.0%20Slides.pdf
http://archive.hack.lu/2012/Mathieu%20RENARD%20-%20Hack.lu%20-%20%EF%BF%BCHacking%20iOS%20Applications%20v1.0%20Slides.pdf
http://archive.hack.lu/2012/Mathieu%20RENARD%20-%20Hack.lu%20-%20%EF%BF%BCHacking%20iOS%20Applications%20v1.0%20Slides.pdf
http://gizmodo.com/5841742/how-did-scarlett-johanssons-phone-get-hacked
http://gizmodo.com/5841742/how-did-scarlett-johanssons-phone-get-hacked
http://www.newyorker.com/online/blogs/elements/2013/09/the-nsa-versus-encryption.html
http://www.newyorker.com/online/blogs/elements/2013/09/the-nsa-versus-encryption.html
http://www.spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-a-921161.html
http://www.spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-a-921161.html
http://stackoverflow.com/questions/5987495/how-to-maintain-voip-socket-connection-in-background
http://stackoverflow.com/questions/5987495/how-to-maintain-voip-socket-connection-in-background
http://stackoverflow.com/questions/5987495/how-to-maintain-voip-socket-connection-in-background
http://www.imore.com/how-gameboy-emulator-finding-its-way-non-jailbroken-devices
http://www.imore.com/how-gameboy-emulator-finding-its-way-non-jailbroken-devices
http://blog.quarkslab.com/imessage-privacy.html
http://www.apple.com/ios/business/
http://www.theregister.co.uk/2013/09/09/fanbois_the_nsa_thinks_youre_all_zombies/
http://www.theregister.co.uk/2013/09/09/fanbois_the_nsa_thinks_youre_all_zombies/
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf
https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf

J. Zdziarski / Digital Investigation 11 (2014) 3-19 19

Mozilla toughens up on CA abuse. http://news.techworld.com/security/
3427196/mozilla-toughens-up-on-ca-certificate-abuse/.

NSA spies reportedly exploited iPhone location bug. http://arstechnica.
com/security/2013/09/nsa-spies-reportedly-exploited-iphone-
location-bug-not-fixed-until-2011/.

Privacy scandal: NSA can spy on smart phone data. Der Spiegel. http://
www.spiegel.de/international/world/privacy-scandal-nsa-can-spy-
on-smart-phone-data-a-920971.html; September 7; 2013.

Renard Mathieu. Hacking Apple accessories to pown iDevices. Sogeti. http://
www.ossir.org/paris/supports/2013/2013-07-09/ipown-redux.pdf.
Seriot Nicolas. iPhone privacy. http://seriot.ch/blog.php?article=20091203;

2010.

The i0S MDM protocol. http://media.blackhat.com/bh-us-11/Schuetz/BH
US_11_Schuetz_InsideAppleMDM_WP.pdf.

The iPhone wiki. http://www.theiphonewiki.com.

Usbmux. http://theiphonewiki.com/wiki/Usbmux.

Usbmuxd. http://theiphonewiki.com/wiki/Usbmux.

xpwntool. http://theiphonewiki.com/wiki/Xpwntool.

Zdziarski. iOS forensic investigative methods. http://www.zdziarski.com/
blog/?p=2287.

Zdziarski Jonathan, Media O'Reilly. iPhone forensics. ISBN 978-
0596153588.

http://news.techworld.com/security/3427196/mozilla-toughens-up-on-ca-certificate-abuse/
http://news.techworld.com/security/3427196/mozilla-toughens-up-on-ca-certificate-abuse/
http://arstechnica.com/security/2013/09/nsa-spies-reportedly-exploited-iphone-location-bug-not-fixed-until-2011/
http://arstechnica.com/security/2013/09/nsa-spies-reportedly-exploited-iphone-location-bug-not-fixed-until-2011/
http://arstechnica.com/security/2013/09/nsa-spies-reportedly-exploited-iphone-location-bug-not-fixed-until-2011/
http://www.spiegel.de/international/world/privacy-scandal-nsa-can-spy-on-smart-phone-data-a-920971.html
http://www.spiegel.de/international/world/privacy-scandal-nsa-can-spy-on-smart-phone-data-a-920971.html
http://www.spiegel.de/international/world/privacy-scandal-nsa-can-spy-on-smart-phone-data-a-920971.html
http://www.ossir.org/paris/supports/2013/2013-07-09/ipown-redux.pdf
http://www.ossir.org/paris/supports/2013/2013-07-09/ipown-redux.pdf
http://seriot.ch/blog.php?article=20091203
http://seriot.ch/blog.php?article=20091203
http://media.blackhat.com/bh-us-11/Schuetz/BH_US_11_Schuetz_InsideAppleMDM_WP.pdf
http://media.blackhat.com/bh-us-11/Schuetz/BH_US_11_Schuetz_InsideAppleMDM_WP.pdf
http://www.theiphonewiki.com
http://theiphonewiki.com/wiki/Usbmux
http://theiphonewiki.com/wiki/Usbmux
http://theiphonewiki.com/wiki/Xpwntool
http://www.zdziarski.com/blog/?p=2287
http://www.zdziarski.com/blog/?p=2287
http://www.zdziarski.com/blog/?p=2287

	Identifying back doors, attack points, and surveillance mechanisms in iOS devices
	Introduction
	Pairing: the keys to everything
	High value services running under iOS
	com.apple.mobilebackup2 (Renard; A cross-platform software library and tools to communicate with iOS devices natively; Bédr ...
	com.apple.mobilesync (Renard; A cross-platform software library and tools to communicate with iOS devices natively)
	com.apple.afc (Renard; A cross-platform software library and tools to communicate with iOS devices natively)
	com.apple.mobile.installation_proxy (Renard; Evasi0n jailbreak; A cross-platform software library and tools to communicate ...
	com.apple.mobile.house_arrest (Renard; A cross-platform software library and tools to communicate with iOS devices natively)
	com.apple.pcapd (Hacking iOS applications)
	com.apple.mobile.file_relay (Renard; Evasi0n jailbreak; A cross-platform software library and tools to communicate with iOS ...
	Accounts
	AddressBook
	Caches
	CoreLocation
	EmbeddedSocial
	GameKitLogs
	HFSMeta
	Keyboard
	Lockdown
	MobileCal
	MobileNotes
	Photos
	SystemConfiguration
	Ubiquity
	UserDatabases
	VARFS
	Voicemail

	Other forensically relevant services
	com.apple.iosdiagnostics.relay
	com.apple.mobile.MCInstall
	com.apple.mobile.diagnostics_relay
	com.apple.mobile.heartbeat
	com.apple.syslog_relay

	Installation of invisible, malicious software
	Fingerprint/passcode pairing security override
	Centrally managed cloud configuration
	Possible uses
	Anatomy

	Suspicious design omissions
	Boot-stage disk key left unprotected
	Packet sniffing services not moved to developer mount
	Lack of adequate pair purging
	Lack of pairing record pinning
	Lack of geofencing in fingerprint reader
	Integrity of iMessage

	References

