
REASONING-BASED
ADAPTIVE LANGUAGE PARSING

Jonathan A. Zdziarski

ABSTRACT
Modern day language classification employs conceptual
machine learning, which relies heavily on the quality of data
that can be extracted from the input text. Data is typically
extracted using a parser with a static set of parsing rules. This
presents a problem for learning machines needing to parse
different languages, many with different structural rules.
Hand-written rules can also provide less-than-optimal parsing
even for languages they were designed for, as fractions of
data can sometimes be more useful than complete recognized
words. This paper outlines a reasoning-based approach
capable of being added to an existing statistical language
classifier to intelligently identify the best characters or pattern
to use as text separators, and therefore the best overall
technique for parsing a corpus of text. This technique applies
to the building and further revising of a tokenizer’s parsing
technique using learned information about the effectiveness of
each potential text delimiter, pattern, or expression.
Moreover, this technique allows for constant adaptation to
new classes of text and/or character sets to continually
improve upon its own effectiveness. The benefit of this
application is an approach to intelligent parsing without any
prior knowledge of the input language(s). As this paper will
show, using an adaptive, reasoning-based parser can provide
equal or greater efficiency than a static parser, especially
when dealing with foreign languages and character sets. At
the lowest level of explanation, the described approach causes
a language parser to constantly reprogram itself to break up
data that it does not find useful until it finds a way to parse
that data so that it is considered more useful than the rest.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Implementation –
statistical, structural.

I.7.m [Document Text and Processing]: Miscellaneous

General Terms
Algorithms

Keywords
parsing, adaptive, token, delimiter, classification, text,
filtering

1.INTRODUCTION
Reasoning machines bear the task of improving their
responses regularly to provide better results. Because
the quality of the input data is so closely related to the
quality of the classification, classifiers should also be
able to detect, or try to detect, their level of efficiency
at extracting quality data from the input sample. Poor
data can lead a classifier to cause errors, simply by
“looking at the wrong things” – the garbage in, garbage

out principle[2]. Manual tokenization is like manual
filtering. A manual tokenizer can only be improved
reactively, providing improved results only after
experiencing an error[5][6]. Statistical language
classifiers typically employ a static set of rules to parse
messages presumed to be in a supported target
language. Such classifiers use a language parser to
generate “tokens”, or small pieces of representative data
from the input text, which are then used for analysis.
These are typically words, short phrases, patterns, or
expressions. Data is often generated using a static set of
word separators or expressions suitable for the language
being parsed. The problem with this approach has
historically been that what may appear to represent
sensible parsing rules for a given language may not
necessarily provide the optimum data for a statistical
classifier. What’s more, language classification is a
large-scale problem, and different languages require
different parsing rules. Some languages do not provide
whitespace characters, making it very difficult to parse
a text without prior knowledge of the language it is
composed in.

To adapt a parser to identify the optimal way to read a
given input text, a method is used to reason the best
parsing technique for the given input. The philosophic
rationale behind this is to break down syntactic
synonymy (structural signs which convey similar
meaning[8]) within a document, only the synonymy
here is based on relevance more so than meaning; that
is, to identify the most unique structures and parse
the message according to these rules rather than
basic rules of language. This is accomplished by
calculating a “usefulness” vector for every potential
parsing technique. In our examples, these techniques
will be choices of token separator and/or expression,
however they need not be limited to simply delimiters,
as we’ll explain in sections two and five.

The value calculated for each parsing technique
predicts the likelihood that the character will be found
within data of little interest to the classifier. The
characters with the highest likelihood of being found in
uninteresting data are then used as parsing separators
(word delimiters) and the remaining characters (those
likely to be found in interesting data) are treated as
constituent characters.

The only requirement to implementing this technique is
that the language classifier must have a mechanism to

determine whether data is of high interest or low
interest – a common function of any classifier. Most
language classifiers do this by means of assigning a
probability to a token in the range of 0.0 to 1.0, where
tokens having probabilities closer to 0.5 for all classes
are considered uninteresting, and tokens with
probabilities closer to the edges are considered of high
interest. Alternative mechanisms may be used as well,
so long as the filter is capable of placing a given token
within such a dichotomy. The mechanics of choosing
the thresholds for this are left up to the implementer.

2.ESTABLISHING DELIMITER SETS
The concept of a token delimiter is common among
most language classifiers. Delimiters are used to
determine how to parse a sample text into smaller
components – words, phrases, and the like. Delimiters
are sometimes elusive, especially when parsing
languages without whitespace, such as Asian languages.
These languages traditionally have required the
identification of words for parsing[10]. The goal of
establishing a delimiter set (or other adaptive parsing
technique) for such languages, here, is to isolate
individual words or other interesting structures without
knowledge of a specific language’s lexicon.

The parser (also known as the tokenizer) is by far the
most heuristic, hard-coded component of most
classifiers, and arguably the central plane of error[4][3].
Data that is considered “uninteresting” is largely
useless to a classifier, and therefore it is advantageous
to have less “uninteresting” data (typically data with a
probability closest to neutral), and more “interesting”
data[3]. Uninteresting data is considered such because it
appears in a similar proportion across the different
classes being categorized (for example, spam and non-
spam). By altering the method in which data is parsed,
data that would otherwise be considered uninteresting
might, instead, be parsed in a different fashion that is
more native to one particular class of data.

The decision for which delimiters to use for a given
classification process is reached by building a
hypothesis space containing all possible delimiters for
consideration and then calculating the probability that
each delimiter will be present in uninteresting data.
Depending on whether ASCII characters, wide
characters, or other such devices are used to fill the
hypothesis space (such as patterns or expressions) - is
relevant only to the extent of granularity and resources
the implementer wants to account for. Every potential
token separator (hypothesis) retains a memory of the
number of times it has appeared in a “high interest”
data point (or token) and a “low interest” data point. A
global statistic is also maintained, keeping track of the
total number of “high interest” and “low interest”
tokens analyzed in the filter’s history. This memory can
and should be unique to different realms of data, such

as header analysis vs. body analysis, and within the
same scope as the tokens themselves (e.g. per-user,
global database, etc.). For data sets spanning many
different languages and/or character sets, a separate
tokenizer memory for each language may help improve
and maintain performance. As classification progresses,
the tokenizer incrementally enhances its knowledge of
the target language’s construction[7], from a machine’s
point of view.

For each potential token separator (delimiter), the
Bayesian Chain Rule is used to calculate the probability
that the delimiter will appear in a low-interest token:

probability(delimiter) =

LowCounter / TotalLow
(LowCounter / TotalLow) + (HighCounter / TotalHigh)

Where LowCounter and HighCounter are the number of
occurrences that the given character has appeared in
each class of token, and TotalLow and TotalHigh
represent the total number of such tokens that have
been analyzed. This is the same formula cited in [6] to
calculate the disposition of a token.

Using this formula, we could calculate, for example, the
likelihood that every ASCII character from 1 – 255
would appear in an uninteresting token. We then take
the n tokens with the highest probability and use those
as token delimiters. After each message has been
processed, the LowCounter, HighCounter, TotalLow,
and TotalHigh counters are updated in the tokenizer’s
memory. For example, if the message processed saw
that the letter A was present in 10 tokens that were
interesting and 5 tokens that were uninteresting,
HighCounter is incremented by 10 and LowCounter is
incremented by 5 within the tokenizer’s memory.

2.1.Bootstrapping
When there is not enough data to establish a full
delimiter set, two options can be employed. The first
option is to simply use a default delimiter set, such as
whitespace, until a reasonable number of adaptive
delimiters can be established. This could prove
problematic, however, for languages not employing
whitespace. The second, and more statistically sound
technique, is to use a limited delimiter set. In this
scenario, characters that do not have enough data
gathered for them are assigned a default probability of
0.5, which will ensure that there are always token
separators in the pipeline. As the tokenizer begins to
make initial observations about the sample text, more
useful delimiters will quickly resolve to a more useful
probability. This approach is referred to in this paper as
“pure” analysis, because the delimiter set is entirely
derived from means of learning. For the tests conducted
here, we determine a token to have sufficient data when

LowCounter and HighCounter are greater than zero,
and LowCounter + HighCounter > 10.

2.2.Alternative Delimiter Hypothesis Spaces
This paper presumes to use the standard ASCII
character set to derive its delimiter set from. While
many languages employ multi-byte characters, using an
ASCII set remains to work quite well as we’ll illustrate
in this paper. This could be due to its machine-native
range, in that is covers all possible values for a single
byte, or possibly that because the text is being machine-
processed, sub-character data shows to be sufficiently
interesting.

Other techniques for building a hypothesis space for
delimiters may include using the wide character data
type (wchar) or possibly even multiple byte
combinations for delimiters. Another technique may
involve maintaining a hypothesis space with duplicates
of each delimiter and an identifier determining whether
to split before, after, or on the delimiter. Additional
delimiter techniques will be explored in section 5.

3.ANALYSIS
The overall process can be summarized in this fashion:

load memory
for each character
 calculate probability(delimiter)
 if probability(delimiter) >= 0.5
 add to sort
end
for top windowSize in sort
 [sort by probability descending]:
 add to token separators list
end

Fig. 3.0.1 Analysis Process

The windowSize vector represents the sort window
size, and ultimately the maximum number of character
delimiters to be used. The tests outlined in this paper
specify the different window sizes tested with Wn
denoted in the test.

3.1.Tokenizer Example
This adaptive approach allows the machine to choose
the best text delimiters it believes will parse the sample
to provide the highest level of confidence in its
decision. The following example is the final delimiter
set chosen in one configured run of the SpamAssassin
corpus (described in section four).

Header Delimiters:

378z049Y;mF:w"O@!^N\%$(>

Body Delimiters:

T?N,I?OS.pEmroaicthldesn

Many characters we would expect to see are present in
one or both sets of delimiters. For example, the “at”
sign (@) allows headers to be parsed for address and
domain information, and the colon (:) is automatically
selected as a general separator in headers. The
exclamation point (!) and dollar sign ($) were
considered largely uninteresting in the message
headers, but were used as constituent characters in the
message body. This is probably because most uses of
these characters are found in the message body, where
they were considered constituent characters. In the
message body, amidst some basic punctuation, the
classifier found many letters commonly not included in
a tokenizer set. As we’ll see, some of these letters were
so common in uninteresting words that it made more
sense to the machine to treat them as a token separator,
which provided much better data to work with. Finally,
some of the question marks in the above example were
actually non-printable characters that were believed to
make good token separators.

In the data shown below, we see many familiar text
fragments that, when tokenized in this fashion,
provided a very useful data point for the classifier. The
s and i values represent the number of times the token
has appeared in spam and non-spam, respectively. Plus
signs (+) represent the joining of two adjacent tokens
together (e.g. biGrams), which is a default feature of the
classifier used.

[0.990000] ,+click (8s, 0i)
Here, we see that the word ‘click’ alone was not as
interesting as when preceded by a comma (,), which
would have normally been used as a token separator.

[0.940828] igh (105s, 2i)
This word fraction probably came from words such as
‘high’ as in ‘high interest mortgage’. It is likely that the
letter H was considered a token separator due to finding
the word in different cases, and/or using symbols to try
and obfuscate the word itself (such as |-|igh). It may
have also been part of a larger word that, when broken
up, was found as a pattern across many spam.

[0.990000] $888 (15s, 0i)
That the dollar sign can make a good constituent
character in many messages, where it is very useful in
identifying dollar amounts used in spam.

[0.990000] ional_Inc.+Now (6s, 0i)
This phrase fragment would normally have been broken
up into several smaller tokens, using underscore and
period as token separators. Instead, the classifier
determined that these made better constituent characters
to give us a very specific identifier for one particular
series of obfuscated spam. Interestingly, this pattern
could cover many different company names: National
Inc, International Inc, Promotional Inc, and others.

During this series, the classifier likely used the letter ‘t’
as a token separator.

[0.990000] s0r+C|ubs (12s, 0i)
Here, we see the number zero and the pipe (|) character
used to obfuscate a series of messages. The classifier
determined that, when considered constituent
characters, helped identify obfuscations.

[0.990000]

!+ESC(B (50s, 0i)
ESC$B(-ESC(B (19s, 0i)
ESC$B!!!!!!!!!!ESC(B (29s, 0i)

This message was in a Japanese character set. Most
humans would have no idea what they were looking at,
but the classifier – without understanding Japanese,
found these pattern of characters to be particularly
native to spam.

4.SUPPORTING DATA
To measure this technique’s effectiveness, tests were
run to compare the overall accuracy of a statistical
classifier with various parser configurations, including
the approach outlined here. These tests were performed
using the DSPAM classifier with three different
configurations:

1. Whitespace Only Tokenizer: A tokenizer with
parsing rules to only break words with
whitespace (spaces, tabs, and new lines).

2. Static Default Set: The default tokenizer with
parsing rules using a static set of hard-coded
word delimiters.

3. Adaptive Tokenizer: A tokenizer using the
techniques outlined in this paper to
intelligently choose the best delimiters.

The raw values provided represent the number of true
positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN).

The tests were conducted by presenting each message
for classification using an even distribution for the ratio
of spam and non-spam in each corpus. If the resulting
classification was incorrect, the message would be
processed for training. Regardles of the classification,
the filter would observe and evaluate the occurrence of
each potential delimiter and add to its memory.

4.1 Comparison of SpamAssassin Public
Corpus
The SpamAssassin Public Corpus is a widely accepted
public email corpus designed for training and testing
spam filters. It consists of over 6,000 email messages -
both spam and non-spam. Using whitespace and static
tokenizers as a baseline, the adaptive tokenization
method increased classification accuracy by as much as

90%. Four separate adaptive tests were run – two using
whitespace (spaces, tabs, and new lines) as default
separators, and two “pure” configurations that did not
make any presuppositions about whitespace. The pure
configuration allowed the parser to identify whitespace
on its own, which it did quickly. The window size was
increased by four in the pure tests to account for the
whitespace characters omitted. All adaptive sets
outperformed the baseline in terms of efficiency and
overall score, however as with such a dramatic increase
in efficiency, this resulted in some additional false
positives. With such a small measure of false positives
to begin with, the significance of this is questionable
and should be investigated further.

 TP TN FP FN
Whitespace 1640 4143 7 256
Static Defaults 1654 4145 5 242
Adaptive,W24 1760 4138 12 136
Adaptive,W32 1723 4140 10 173
Pure,W28 1756 4137 13 140
Pure,W36 1666 4142 8 230

Fig. 4.1.1 SA Corpus Raw Test Results

 Precision Recall FScore
Whitespace 0.9957 0.8649 0.925
Static Defaults 0.9969 0.8723 0.930
Adaptive,W24 0.9932 0.9282 0.959
Adaptive,W32 0.9942 0.9087 0.949
Pure,W28 0.9926 0.9261 0.958
Pure,W36 0.9952 0.8786 0.933

Fig. 4.1.2 SA Corpus Test Metrics

4.1.1 Counter-Example of the
SpamAssassin Corpus
To qualify the increase in overall classification
accuracy, the SpamAssassin Corpus tested above was
re-run with the formula reversed – that is, the characters
found to have the highest probability of being found in
useful data, instead of uninteresting data, was used
instead. As could be expected, this greatly impaired
accuracy as shown in Fig. 4.3 below. In this example,
the Adaptive,W24 approach was used with an identical
configuration as before, with the calculation reversed.

With the drop in efficiency and score, the rate of false
positives naturally also dropped, however the change is
relatively insignificant compared to the overall results.

 TP TN FP FN
Counter-Example 1578 4146 4 318

Fig. 4.1.3 SA Corpus Counter-Example Raw Test Data

 Precision Recall FScore
Counter-Example 0.9974 0.8322 0.9073

Fig. 4.1.4 SA Corpus Counter-Example Metrics

4.2 Comparison of ISP Asian Corpus

The Asian corpus used consists of nearly 35,000 email
messages, with a 1:4 mix of legitimate mail vs. spam.
An unnamed Chinese Internet Service Provider
assembled the corpus primarily for academic purposes
such as this. Only the message bodies were used in
parsing the Asian corpus, to measure the classifier’s
efficiency at classifying the Chinese language. The
DSPAM classifier itself does not support multibyte
characters, and so both Chinese characters and the
adaptive parsing characters were processed as single-
byte patterns. The total number of messages analyzed
was somewhat inconsistent, because each different
tokenizer was unable to parse some of the messages
from the corpus at all. So while these statistics show a
significant improvement in filtering accuracy, the
adaptive tokenizer was also able to process more
messages that would have otherwise generated an error
in the classifier. Overall, the adaptive technique
increased classification accuracy significantly.

This test also factored in a comparison to the Kakasi
language-processing filter, which was designed to
convert between certain Asian character sets to provide
a set of ASCII-readable tokens delimited by white
space. It’s important to note that the Kakasi filter was
originally designed for Japanese, and not Chinese,
however it did reasonably well in spite of this and
scored better than standard heuristic tokenizers.
Unfortunately, a Japanese corpus was unavailable for
testing.

 TP TN FP FN
Whitespace 21085 9034 24 3699
Static Defaults 22787 8782 66 2109
Kakasi* 18745 8904 108 1438
Adaptive,W24 23952 9224 40 1104
Adaptive,W32 24068 4222 42 988

Fig. 4.2.1 Asian Corpus Raw Test Results

 Precision Recall FScore
Whitespace 0.9988 0.8507 0.918
Static Defaults 0.9971 0.9152 0.954
Kakasi* 0.9942 0.9287 0.960
Adaptive,W24 0.9983 0.9559 0.976
Adaptive,W32 0.9982 0.9596 0.978

Fig. 4.2.2 Asian Corpus Test Metrics

* Kakasi was not intended for Chinese text

4.3 Comparison of TREC Corpus
The TREC corpus is a large corpus of email constructed
for the NIST Text Retrieval Conference’s spam track.
The corpus consists of more than 35,000 spam and non-
spam email in more than 100 different character
encodings. Unlike all other tests of adaptive
tokenization, this time a reasoning-based approach
yielded mixed results, providing little advantage, but
did manage to keep up with the other tokenizers. The

TREC corpus as a whole contains an overabundance of
mixed mail from a plethora of different languages,
encodings, and of varying quality. This proves useful as
a “worst case scenario” for filter tests.

 TP TN FP FN
Whitespace 24426 12878 32 486
Static Defaults 24510 12885 25 402
Adaptive,W24 24474 12879 26 438
Adaptive,W32 24455 12878 27 457

Fig. 4.3.1 TREC Corpus Raw Test Results

 Precision Recall FScore
Whitespace 0.9986 0.9804 0.989
Static Defaults 0.9989 0.9838 0.991
Adaptive,W24 0.9989 0.9824 0.990
Adaptive,W32 0.9988 0.9816 0.990

Fig. 4.3.2 TREC Corpus Test Metrics

5.FUTURE WORK
Other areas to research include extending the simple
ASCII delimiter set to include bigram and trigram
delimiters and incorporate delimiter placement (before
or after the delimiter). This would allow the parser to
intelligently identify inflectional endings in many
languages and perform statistical word stemming, if it
believed such parsing would improve overall output.
The Greek and Chinese language are an excellent
example of this, as the prefixes, cases, and inflectional
endings applied to words can cause them to change
dramatically[10]. Allowing the parser to determine
whether the prefix/suffix better serves as a separator or
a constituent component would allow the parser to root
certain words it found to be more interesting in such a
context, and apply the prefixes or suffixes in more
general words that took on a more specialized
disposition with the component’s presence.

6.CONCLUSION
By adaptively reconfiguring the parser, a lexical
machine can quickly learn and begin to parse many
different forms of data on its own, without prior
knowledge of the language by the filter author. This
makes a reasoning-based approach to language parsing
a very powerful way to generate data, and further
optimize existing data. This technique’s unsupervised
form of training allows for quick and accurate parsing
without additional work by the end-user, or previous
knowledge of the language being parsed.

Further improvements might be made by using a
separate tokenizer memory for each known character
set introduced. Adjusting thresholds for determining
usefulness of data can also play a role in the overall
benefits of this approach.

While further tuning may be necessary for highly
diverse corpora, this approach in general provides a

significant increase in overall classification accuracy
for most texts. This technique can be applied to many
facets of language classification including character-set
identification, pattern recognition, document
fingerprinting, and fuzzy data mining operations.

6.REFERENCES

[1] Zdziarski J, Ending Spam, Bayesian Content Filtering
and the Art of Statistical Language Classification. “Adaptive
Tokenization”, No Starch Press, ISBN 1593270526
[2] Zdziarski, J. Detecting Contextual Anomalies in Lexical
Reasoning Machines, January 2006, Preceedings of the MIT
Spam Conference 2005
[3] Graham, P. So Far, So Good, August 2003,
http://www.paulgraham.com/sofar.html
[4] Graham, P. Better Bayesian Filtering, January 2003,
http://www.paulgraham.com/better.html
[5] Yerazunis, W. The Spam Filtering Accuracy Plateau and
How to Get Past It, Preceedings of the MIT Spam Conference
2003
[6] Graham, P. A Plan for Spam, August 2002,
http://www.paulgraham.com/spam.html
[7] Roark B., Johnson M., Efficient probabilistic top-down
and left-corner parsing, Proceedings of the 37th annual
meeting of the Association for Computational Linguistics on
Computational Linguistics, p.421-428, June 20-26, 1999,
College Park, Maryland
[8] Kozerenko E., Semantic Approach to Language
Structures, Institute for Informatics Problems of the Russian
Academy of Sciences, Moscow, Russia
[9] Collins, M. Three generative, lexicalised models for
statistical parsing. ACL 35/EACL 8, pp. 16-23, 1997.
[10] Wu D., Fung P. Improving Chinese Tokenization With
Linguistic Filters on Statistical Lexical Acquisition,
University of Science and Technology, Clear Water Bay,
Hong Kong

