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ABSTRACT 
Modern day language classification employs conceptual 
machine learning, which relies heavily on the quality of data 
that can be extracted from the input text. Data is typically 
extracted using a parser with a static set of parsing rules. This 
presents a problem for learning machines needing to parse 
different languages, many with different structural rules. 
Hand-written rules can also provide less-than-optimal parsing 
even for languages they were designed for, as fractions of 
data can sometimes be more useful than complete recognized 
words. This paper outlines a reasoning-based approach 
capable of being added to an existing statistical language 
classifier to intelligently identify the best characters or pattern 
to use as text separators, and therefore the best overall 
technique for parsing a corpus of text. This technique applies 
to the building and further revising of a tokenizer’s parsing 
technique using learned information about the effectiveness of 
each potential text delimiter, pattern, or expression. 
Moreover, this technique allows for constant adaptation to 
new classes of text and/or character sets to continually 
improve upon its own effectiveness. The benefit of this 
application is an approach to intelligent parsing without any 
prior knowledge of the input language(s). As this paper will 
show, using an adaptive, reasoning-based parser can provide 
equal or greater efficiency than a static parser, especially 
when dealing with foreign languages and character sets. At 
the lowest level of explanation, the described approach causes 
a language parser to constantly reprogram itself to break up 
data that it does not find useful until it finds a way to parse 
that data so that it is considered more useful than the rest. 

Categories and Subject Descriptors 
I.5.1 [Pattern Recognition]: Implementation – 
statistical, structural. 

I.7.m [Document Text and Processing]:  Miscellaneous 

General Terms 
Algorithms 
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1.INTRODUCTION 
Reasoning machines bear the task of improving their 
responses regularly to provide better results. Because 
the quality of the input data is so closely related to the 
quality of the classification, classifiers should also be 
able to detect, or try to detect, their level of efficiency 
at extracting quality data from the input sample. Poor 
data can lead a classifier to cause errors, simply by 
“looking at the wrong things” – the garbage in, garbage 

out principle[2]. Manual tokenization is like manual 
filtering. A manual tokenizer can only be improved 
reactively, providing improved results only after 
experiencing an error[5][6]. Statistical language 
classifiers typically employ a static set of rules to parse 
messages presumed to be in a supported target 
language. Such classifiers use a language parser to 
generate “tokens”, or small pieces of representative data 
from the input text, which are then used for analysis. 
These are typically words, short phrases, patterns, or 
expressions. Data is often generated using a static set of 
word separators or expressions suitable for the language 
being parsed. The problem with this approach has 
historically been that what may appear to represent 
sensible parsing rules for a given language may not 
necessarily provide the optimum data for a statistical 
classifier. What’s more, language classification is a 
large-scale problem, and different languages require 
different parsing rules. Some languages do not provide 
whitespace characters, making it very difficult to parse 
a text without prior knowledge of the language it is 
composed in.  
 
To adapt a parser to identify the optimal way to read a 
given input text, a method is used to reason the best 
parsing technique for the given input. The philosophic 
rationale behind this is to break down syntactic 
synonymy (structural signs which convey similar 
meaning[8]) within a document, only the synonymy 
here is based on relevance more so than meaning; that 
is, to identify the most unique structures and parse 
the message according to these rules rather than 
basic rules of language. This is accomplished by 
calculating a “usefulness” vector for every potential 
parsing technique. In our examples, these techniques 
will be choices of token separator and/or expression, 
however they need not be limited to simply delimiters, 
as we’ll explain in sections two and five. 
 
The value calculated for each parsing technique 
predicts the likelihood that the character will be found 
within data of little interest to the classifier. The 
characters with the highest likelihood of being found in 
uninteresting data are then used as parsing separators 
(word delimiters) and the remaining characters (those 
likely to be found in interesting data) are treated as 
constituent characters. 
 
The only requirement to implementing this technique is 
that the language classifier must have a mechanism to 



determine whether data is of high interest or low 
interest – a common function of any classifier. Most 
language classifiers do this by means of assigning a 
probability to a token in the range of 0.0 to 1.0, where 
tokens having probabilities closer to 0.5 for all classes 
are considered uninteresting, and tokens with 
probabilities closer to the edges are considered of high 
interest. Alternative mechanisms may be used as well, 
so long as the filter is capable of placing a given token 
within such a dichotomy. The mechanics of choosing 
the thresholds for this are left up to the implementer. 
 
2.ESTABLISHING DELIMITER SETS 
The concept of a token delimiter is common among 
most language classifiers. Delimiters are used to 
determine how to parse a sample text into smaller 
components – words, phrases, and the like. Delimiters 
are sometimes elusive, especially when parsing 
languages without whitespace, such as Asian languages. 
These languages traditionally have required the 
identification of words for parsing[10]. The goal of 
establishing a delimiter set (or other adaptive parsing 
technique) for such languages, here, is to isolate 
individual words or other interesting structures without 
knowledge of a specific language’s lexicon. 
 
The parser (also known as the tokenizer) is by far the 
most heuristic, hard-coded component of most 
classifiers, and arguably the central plane of error[4][3]. 
Data that is considered “uninteresting” is largely 
useless to a classifier, and therefore it is advantageous 
to have less “uninteresting” data (typically data with a 
probability closest to neutral), and more “interesting” 
data[3]. Uninteresting data is considered such because it 
appears in a similar proportion across the different 
classes being categorized (for example, spam and non-
spam). By altering the method in which data is parsed, 
data that would otherwise be considered uninteresting 
might, instead, be parsed in a different fashion that is 
more native to one particular class of data.  
 
The decision for which delimiters to use for a given 
classification process is reached by building a 
hypothesis space containing all possible delimiters for 
consideration and then calculating the probability that 
each delimiter will be present in uninteresting data. 
Depending on whether ASCII characters, wide 
characters, or other such devices are used to fill the 
hypothesis space (such as patterns or expressions) - is 
relevant only to the extent of granularity and resources 
the implementer wants to account for. Every potential 
token separator (hypothesis) retains a memory of the 
number of times it has appeared in a “high interest” 
data point (or token) and a “low interest” data point. A 
global statistic is also maintained, keeping track of the 
total number of “high interest” and “low interest” 
tokens analyzed in the filter’s history. This memory can 
and should be unique to different realms of data, such 

as header analysis vs. body analysis, and within the 
same scope as the tokens themselves (e.g. per-user, 
global database, etc.). For data sets spanning many 
different languages and/or character sets, a separate 
tokenizer memory for each language may help improve 
and maintain performance. As classification progresses, 
the tokenizer incrementally enhances its knowledge of 
the target language’s construction[7], from a machine’s 
point of view. 
 
For each potential token separator (delimiter), the 
Bayesian Chain Rule is used to calculate the probability 
that the delimiter will appear in a low-interest token:  
 
probability(delimiter) = 
 
LowCounter / TotalLow 
(LowCounter / TotalLow) + (HighCounter / TotalHigh) 
 
Where LowCounter and HighCounter are the number of 
occurrences that the given character has appeared in 
each class of token, and TotalLow and TotalHigh 
represent the total number of such tokens that have 
been analyzed. This is the same formula cited in [6] to 
calculate the disposition of a token. 
 
Using this formula, we could calculate, for example, the 
likelihood that every ASCII character from 1 – 255 
would appear in an uninteresting token. We then take 
the n tokens with the highest probability and use those 
as token delimiters. After each message has been 
processed, the LowCounter, HighCounter, TotalLow, 
and TotalHigh counters are updated in the tokenizer’s 
memory. For example, if the message processed saw 
that the letter A was present in 10 tokens that were 
interesting and 5 tokens that were uninteresting, 
HighCounter is incremented by 10 and LowCounter is 
incremented by 5 within the tokenizer’s memory. 
 
2.1.Bootstrapping 
When there is not enough data to establish a full 
delimiter set, two options can be employed. The first 
option is to simply use a default delimiter set, such as 
whitespace, until a reasonable number of adaptive 
delimiters can be established. This could prove 
problematic, however, for languages not employing 
whitespace. The second, and more statistically sound 
technique, is to use a limited delimiter set. In this 
scenario, characters that do not have enough data 
gathered for them are assigned a default probability of 
0.5, which will ensure that there are always token 
separators in the pipeline. As the tokenizer begins to 
make initial observations about the sample text, more 
useful delimiters will quickly resolve to a more useful 
probability. This approach is referred to in this paper as 
“pure” analysis, because the delimiter set is entirely 
derived from means of learning. For the tests conducted 
here, we determine a token to have sufficient data when 



LowCounter and HighCounter are greater than zero, 
and LowCounter + HighCounter > 10. 
 
2.2.Alternative Delimiter Hypothesis Spaces 
This paper presumes to use the standard ASCII 
character set to derive its delimiter set from. While 
many languages employ multi-byte characters, using an 
ASCII set remains to work quite well as we’ll illustrate 
in this paper. This could be due to its machine-native 
range, in that is covers all possible values for a single 
byte, or possibly that because the text is being machine-
processed, sub-character data shows to be sufficiently 
interesting. 
 
Other techniques for building a hypothesis space for 
delimiters may include using the wide character data 
type (wchar) or possibly even multiple byte 
combinations for delimiters. Another technique may 
involve maintaining a hypothesis space with duplicates 
of each delimiter and an identifier determining whether 
to split before, after, or on the delimiter. Additional 
delimiter techniques will be explored in section 5. 
 
3.ANALYSIS 
The overall process can be summarized in this fashion: 
 
load memory 
for each character 
  calculate probability(delimiter) 
  if probability(delimiter) >= 0.5 
    add to sort 
end 
for top windowSize in sort 
  [sort by probability descending]: 
  add to token separators list 
end 

Fig. 3.0.1 Analysis Process 
 
The windowSize vector represents the sort window 
size, and ultimately the maximum number of character 
delimiters to be used. The tests outlined in this paper 
specify the different window sizes tested with Wn 
denoted in the test. 
 
3.1.Tokenizer Example 
This adaptive approach allows the machine to choose 
the best text delimiters it believes will parse the sample 
to provide the highest level of confidence in its 
decision. The following example is the final delimiter 
set chosen in one configured run of the SpamAssassin 
corpus (described in section four). 
 
Header Delimiters: 

378z049Y;mF:w"O@!^N\%$(> 
 
Body Delimiters: 

T?N,I?OS.pEmroaicthldesn 
 

Many characters we would expect to see are present in 
one or both sets of delimiters. For example, the “at” 
sign (@) allows headers to be parsed for address and 
domain information, and the colon (:) is automatically 
selected as a general separator in headers. The 
exclamation point (!) and dollar sign ($) were 
considered largely uninteresting in the message 
headers, but were used as constituent characters in the 
message body. This is probably because most uses of 
these characters are found in the message body, where 
they were considered constituent characters. In the 
message body, amidst some basic punctuation, the 
classifier found many letters commonly not included in 
a tokenizer set. As we’ll see, some of these letters were 
so common in uninteresting words that it made more 
sense to the machine to treat them as a token separator, 
which provided much better data to work with. Finally, 
some of the question marks in the above example were 
actually non-printable characters that were believed to 
make good token separators. 
 
In the data shown below, we see many familiar text 
fragments that, when tokenized in this fashion, 
provided a very useful data point for the classifier. The 
s and i values represent the number of times the token 
has appeared in spam and non-spam, respectively. Plus 
signs (+) represent the joining of two adjacent tokens 
together (e.g. biGrams), which is a default feature of the 
classifier used. 
 
[0.990000] ,+click (8s, 0i) 
Here, we see that the word ‘click’ alone was not as 
interesting as when preceded by a comma (,), which 
would have normally been used as a token separator. 
 
[0.940828] igh (105s, 2i) 
This word fraction probably came from words such as 
‘high’ as in ‘high interest mortgage’. It is likely that the 
letter H was considered a token separator due to finding 
the word in different cases, and/or using symbols to try 
and obfuscate the word itself (such as |-|igh). It may 
have also been part of a larger word that, when broken 
up, was found as a pattern across many spam. 
 
[0.990000] $888 (15s, 0i) 
That the dollar sign can make a good constituent 
character in many messages, where it is very useful in 
identifying dollar amounts used in spam. 
 
[0.990000] ional_Inc.+Now (6s, 0i) 
This phrase fragment would normally have been broken 
up into several smaller tokens, using underscore and 
period as token separators. Instead, the classifier 
determined that these made better constituent characters 
to give us a very specific identifier for one particular 
series of obfuscated spam. Interestingly, this pattern 
could cover many different company names: National 
Inc, International Inc, Promotional Inc, and others. 



During this series, the classifier likely used the letter ‘t’ 
as a token separator. 
 
[0.990000] s0r+C|ubs (12s, 0i) 
Here, we see the number zero and the pipe (|) character 
used to obfuscate a series of messages. The classifier 
determined that, when considered constituent 
characters, helped identify obfuscations. 
 
[0.990000] 

!+ESC(B (50s, 0i) 
ESC$B(-ESC(B (19s, 0i) 
ESC$B!!!!!!!!!!ESC(B (29s, 0i) 

This message was in a Japanese character set. Most 
humans would have no idea what they were looking at, 
but the classifier – without understanding Japanese, 
found these pattern of characters to be particularly 
native to spam. 
 
4.SUPPORTING DATA 
To measure this technique’s effectiveness, tests were 
run to compare the overall accuracy of a statistical 
classifier with various parser configurations, including 
the approach outlined here. These tests were performed 
using the DSPAM classifier with three different 
configurations: 
 

1. Whitespace Only Tokenizer: A tokenizer with 
parsing rules to only break words with 
whitespace (spaces, tabs, and new lines). 

2. Static Default Set: The default tokenizer with 
parsing rules using a static set of hard-coded 
word delimiters.  

3. Adaptive Tokenizer: A tokenizer using the 
techniques outlined in this paper to 
intelligently choose the best delimiters. 

 
The raw values provided represent the number of true 
positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN). 
 
The tests were conducted by presenting each message 
for classification using an even distribution for the ratio 
of spam and non-spam in each corpus. If the resulting 
classification was incorrect, the message would be 
processed for training.  Regardles of the classification, 
the filter would observe and evaluate the occurrence of 
each potential delimiter and add to its memory. 
 
4.1 Comparison of SpamAssassin Public 
Corpus 
The SpamAssassin Public Corpus is a widely accepted 
public email corpus designed for training and testing 
spam filters. It consists of over 6,000 email messages - 
both spam and non-spam. Using whitespace and static 
tokenizers as a baseline, the adaptive tokenization 
method increased classification accuracy by as much as 

90%. Four separate adaptive tests were run – two using 
whitespace (spaces, tabs, and new lines) as default 
separators, and two “pure” configurations that did not 
make any presuppositions about whitespace. The pure 
configuration allowed the parser to identify whitespace 
on its own, which it did quickly. The window size was 
increased by four in the pure tests to account for the 
whitespace characters omitted. All adaptive sets 
outperformed the baseline in terms of efficiency and 
overall score, however as with such a dramatic increase 
in efficiency, this resulted in some additional false 
positives. With such a small measure of false positives 
to begin with, the significance of this is questionable 
and should be investigated further. 
 

 TP TN FP FN 
Whitespace 1640 4143 7 256 
Static Defaults 1654 4145 5 242 
Adaptive,W24 1760 4138 12 136 
Adaptive,W32 1723 4140 10 173 
Pure,W28 1756 4137 13 140 
Pure,W36 1666 4142 8 230 

Fig. 4.1.1 SA Corpus Raw Test Results 
 

 Precision Recall FScore 
Whitespace 0.9957 0.8649 0.925 
Static Defaults 0.9969 0.8723 0.930 
Adaptive,W24 0.9932 0.9282 0.959 
Adaptive,W32 0.9942 0.9087 0.949 
Pure,W28 0.9926 0.9261 0.958 
Pure,W36 0.9952 0.8786 0.933  

Fig. 4.1.2 SA Corpus Test Metrics 
 
4.1.1 Counter-Example of the 
SpamAssassin Corpus 
To qualify the increase in overall classification 
accuracy, the SpamAssassin Corpus tested above was 
re-run with the formula reversed – that is, the characters 
found to have the highest probability of being found in 
useful data, instead of uninteresting data, was used 
instead. As could be expected, this greatly impaired 
accuracy as shown in Fig. 4.3 below. In this example, 
the Adaptive,W24 approach was used with an identical 
configuration as before, with the calculation reversed. 
 
With the drop in efficiency and score, the rate of false 
positives naturally also dropped, however the change is 
relatively insignificant compared to the overall results. 
 

 TP TN FP FN 
Counter-Example 1578 4146 4 318 

Fig. 4.1.3 SA Corpus Counter-Example Raw Test Data 
 
 Precision Recall FScore 
Counter-Example 0.9974 0.8322 0.9073 

Fig. 4.1.4 SA Corpus Counter-Example Metrics 
 
4.2 Comparison of ISP Asian Corpus 



The Asian corpus used consists of nearly 35,000 email 
messages, with a 1:4 mix of legitimate mail vs. spam. 
An unnamed Chinese Internet Service Provider 
assembled the corpus primarily for academic purposes 
such as this. Only the message bodies were used in 
parsing the Asian corpus, to measure the classifier’s 
efficiency at classifying the Chinese language. The 
DSPAM classifier itself does not support multibyte 
characters, and so both Chinese characters and the 
adaptive parsing characters were processed as single-
byte patterns. The total number of messages analyzed 
was somewhat inconsistent, because each different 
tokenizer was unable to parse some of the messages 
from the corpus at all. So while these statistics show a 
significant improvement in filtering accuracy, the 
adaptive tokenizer was also able to process more 
messages that would have otherwise generated an error 
in the classifier. Overall, the adaptive technique 
increased classification accuracy significantly. 
 
This test also factored in a comparison to the Kakasi 
language-processing filter, which was designed to 
convert between certain Asian character sets to provide 
a set of ASCII-readable tokens delimited by white 
space. It’s important to note that the Kakasi filter was 
originally designed for Japanese, and not Chinese, 
however it did reasonably well in spite of this and 
scored better than standard heuristic tokenizers. 
Unfortunately, a Japanese corpus was unavailable for 
testing. 
 

 TP TN FP FN 
Whitespace 21085 9034 24 3699 
Static Defaults 22787 8782 66 2109 
Kakasi*  18745 8904 108 1438 
Adaptive,W24 23952 9224 40 1104 
Adaptive,W32 24068 4222 42 988 

Fig. 4.2.1 Asian Corpus Raw Test Results 
 
 Precision Recall FScore 
Whitespace 0.9988 0.8507 0.918 
Static Defaults 0.9971 0.9152 0.954 
Kakasi* 0.9942 0.9287 0.960 
Adaptive,W24 0.9983 0.9559 0.976 
Adaptive,W32 0.9982 0.9596 0.978 

Fig. 4.2.2 Asian Corpus Test Metrics 
 
* Kakasi was not intended for Chinese text 
 
4.3 Comparison of TREC Corpus 
The TREC corpus is a large corpus of email constructed 
for the NIST Text Retrieval Conference’s spam track. 
The corpus consists of more than 35,000 spam and non-
spam email in more than 100 different character 
encodings. Unlike all other tests of adaptive 
tokenization, this time a reasoning-based approach 
yielded mixed results, providing little advantage, but 
did manage to keep up with the other tokenizers. The 

TREC corpus as a whole contains an overabundance of 
mixed mail from a plethora of different languages, 
encodings, and of varying quality. This proves useful as 
a “worst case scenario” for filter tests. 
  

 TP TN FP FN 
Whitespace 24426 12878 32 486 
Static Defaults 24510 12885 25 402 
Adaptive,W24 24474 12879 26 438 
Adaptive,W32 24455 12878 27 457 

Fig. 4.3.1 TREC Corpus Raw Test Results 
 
 Precision Recall FScore 
Whitespace 0.9986 0.9804 0.989 
Static Defaults 0.9989 0.9838 0.991 
Adaptive,W24 0.9989 0.9824 0.990 
Adaptive,W32 0.9988 0.9816 0.990 

Fig. 4.3.2 TREC Corpus Test Metrics 
  
5.FUTURE WORK 
Other areas to research include extending the simple 
ASCII delimiter set to include bigram and trigram 
delimiters and incorporate delimiter placement (before 
or after the delimiter). This would allow the parser to 
intelligently identify inflectional endings in many 
languages and perform statistical word stemming, if it 
believed such parsing would improve overall output. 
The Greek and Chinese language are an excellent 
example of this, as the prefixes, cases, and inflectional 
endings applied to words can cause them to change 
dramatically[10]. Allowing the parser to determine 
whether the prefix/suffix better serves as a separator or 
a constituent component would allow the parser to root 
certain words it found to be more interesting in such a 
context, and apply the prefixes or suffixes in more 
general words that took on a more specialized 
disposition with the component’s presence. 
 
6.CONCLUSION 
By adaptively reconfiguring the parser, a lexical 
machine can quickly learn and begin to parse many 
different forms of data on its own, without prior 
knowledge of the language by the filter author. This 
makes a reasoning-based approach to language parsing 
a very powerful way to generate data, and further 
optimize existing data. This technique’s unsupervised 
form of training allows for quick and accurate parsing 
without additional work by the end-user, or previous 
knowledge of the language being parsed. 
 
Further improvements might be made by using a 
separate tokenizer memory for each known character 
set introduced. Adjusting thresholds for determining 
usefulness of data can also play a role in the overall 
benefits of this approach. 
 
While further tuning may be necessary for highly 
diverse corpora, this approach in general provides a 



significant increase in overall classification accuracy 
for most texts. This technique can be applied to many 
facets of language classification including character-set 
identification, pattern recognition, document 
fingerprinting, and fuzzy data mining operations. 
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