

APPROACHES TO PHISHING IDENTIFICATION USING
MATCH AND PROBABILISTIC DIGITAL

FINGERPRINTING TECHNIQUES

Jonathan Zdziarski Weilai Yang Paul Judge
CipherTrust, Inc. CipherTrust, Inc. CipherTrust, Inc.
jonathan.zdziarski@ciphertrust.com weilai.yang@ciphertrust.com paul.judge@ciphertrust.com

ABSTRACT
Phishing is a malicious form of Internet fraud with the aim to steal valuable information such as credit cards, social security
numbers, and account information. This is accomplished primarily by crafting a faux online presence to masquerade as a
legitimate institution and soliciting information from unsuspecting customers. Phishing attacks involving websites are among the
most commonplace and effective types of online fraud, having the potential to cost both victims and targeted organizations in
privacy, reputation, and monetarily. Due to the malicious nature of phishing attacks, identifying them bears higher demands in
detection than filtering spam or other nuisance content. This paper establishes some requirements for phishing identification and
explains various approaches to detection by looking for copying of web site layout and structure through source code (and
optionally image) fingerprinting. This enables us to perform a number of exact-match comparisons to genuine websites or to
other known attacks. Lastly, we also explore techniques to correlate different attacks to a single likely source.

Categories and Subject Descriptors
I.7.m [Document Text and Processing]: Miscellaneous

General Terms
Algorithms

Keywords
fingerprinting, phishing, copying, contextual, classification, text, fraud, detection

1.INTRODUCTION

Successful phishing attacks are based on a form of copying, or reengineering, a website’s design and layout in order to pass
themselves off as a genuine (targeted) website. A malicious website is crafted which looks and feels like the original site,
convincing unsuspecting users that they are giving personal information to a trusted organization. Users are frequently drawn to
the sites by forged emails designed to look like legitimate correspondence and may even copy the body from real email, but when
the user clicks a link to visit the website, they will be directed to the malicious site instead. The more convincing a phishing
attack appears - or rather, the more genuine a malicious website looks - the more success the attack will have in extracting
personal information. Some phishing attacks go so far as to create faux websites for which there is no legitimate counterpart; e.g.
a page prompting users for personal information the organization wouldn’t have otherwise asked for.

In this section, we will discuss the challenges and goals of a successful anti-phishing solution. In section 2, we will cover
fingerprinting as a technique to detect phishing attacks and cover various approaches to printing itself. We’ll provide an
illustration of the match process and cover a probabilistic approach towards detection when using smaller-scale fingerprints.
Finally, section 3 will cover source correlation and how different attacks can be correlated back to a single likely source.

1.1 Background

Phishing attacks are a presence whose existence is under false pretenses, and with the goal of convincing the user to enter
personal information such as credit card numbers, social security numbers, or any other information that is valuable to the
attacker. The primary problem in detecting phishing attacks is that their delivery mechanism bears such a close resemblance to
legitimate correspondence that many content-based detection techniques provide only fuzzy results at best. On top of this, it is the
actual attack, and not the email, that poses the real threat and the added demand of correlating the attack to the targeted site
makes mere content-based detection incomplete.

Fingerprint detection is a technique used to identify copying between documents, in this case faux websites. Applying

fingerprinting technique to this problem allows for the detection of copying between a legitimate institution’s website or of
another, similar attack. This allows us to train previous attacks, legitimate web pages, or a mixture of both. By identifying this
copying, we identify the attacks. The benefits of fingerprinting are two-fold. First, in precise identification of an attack, but
secondly by forcing scammers to further obfuscate their layout and source code to avoid printing against an original site or a
previous attack. In doing so, this increases the risk that the site will appear disgenuine.

1.2 Detection Goals

The goals for identifying phishing can be slightly more demanding than those of identifying spam. Identifying a message as
undesirable is relatively easy to accomplish using many methods, but because phishing attacks require a different takedown
strategy, it’s also necessary to identify messages that are specifically phishing. The burden of enforcement also rests primarily on
the targeted organization rather than the service provider, and so institutions need to know when they are targeted so they can
involve law enforcement. Once law enforcement has made arrests, proving that copying actually took place (as opposed to a
confusion by unsavvy users) can prove useful in prosecution. Finally, managing the problem requires knowledge of which
sources are responsible for the largest number of attacks in order to focus efforts and avoid wasting time on minor offenders, or
to increase the number of charges against an individual that has already been caught. To summarize, an effective anti-phishing
solution should meet the following requirements:

1. Distinguish nuisance spam/spoofing from phishing
2. Identify the organization being targeted in the phishing attack
3. Provide evidentiary examples of copying
4. Correlate different attacks to individual sources

1.3 Existing Detection Approaches

Many approaches exist today in the field of email filtering, some of which are used with varying levels of efficiency in
identifying phishing. Most operate on some characteristics of the message content or envelope. Some attempts have been made to
apply these techniques to website content; however the existing approaches fail to satisfy many of the goals specific to phishing
identification, as illustrated in Fig. 1.1.

1.3.1 Content-Based Filtering

Content-based filtering, such as Bayesian content analysis, has shown to be extremely effective at identifying unwanted content,
and can even identify many phishing attacks as spam. Content-based filtering operates on the message content to weigh key
words or phrases of interest and assign an overall probability for a particular category. These categories, however, must be
predefined and therefore it is infeasible to use content-based filtering as a mechanism for identifying specific organizations being
targeted. Phishing messages also bear a significant resemblance to both spam and legitimate mail, making it much more difficult
to classify than the linearly separable problem of spam detection. A content-based filter’s efficiency in identifying phishing
messages can be significantly lower when the user also receives legitimate mail from the target organization, making it more
difficult for the filter to tell the difference between the two, nevertheless the results are usually acceptable.

Other content-based approaches, such as KNN (K-Nearest Neighbor) provide clustering methods capable of dynamically creating
groups of like messages, however mapping these clusters back to individual organizations (as well as the existing issues
discussed of content identification) can be fuzzy and require significant maintenance. Content-based filtering provides no true
evidentiary proof of copying, as it can only deliver the number of hints it found interesting, which may be sparse words or
phrases spread throughout the document. This same limitation makes it difficult to correlate different attacks from similar
sources, again, as only various sparse pieces of text are used.

1.3.2 Envelope Heuristics

Envelope heuristics involve performing various tests on the headers of a message to determine whether or not they have the
characteristics of a forged message. It is relatively easy to identify forged messages whose domain name does not match the
reverse DNS of the sending mail server, however with many caveats. Not all businesses run their own mail server, and in fact
many businesses are still “virtual”, whose employees use whatever mail server their ISP provides (making tools such as sender-
policy framework infeasible).

More importantly, however, identifying forgery doesn’t distinguish spoofed spam from actual phishing attacks. Because a large
percentage of spam also forges the sender address, there is no way to identify, with any level of certainty, which messages are
phishing. Envelope heuristics also lack the ability to provide definitive information about the targeted organization. While many
phishing attacks spoof the target domain, many also do not. For example, many PayPal phishes use a sender address of
support@gaypal.com, or historically, support@paypai.com. Only source address information can be used to correlate attacks, and
so different attacks (which are likely to originate from different source addresses) cannot be correlated to each other.

1.3.3 Reputation Systems

Reputation systems provide collaborative intelligence about source nodes on a network and provide invaluable information about
sources of network phenomenon, serving as a correlation piece. Some examples of these systems include CipherTrust
TrustedSource[6] and Project Lumos[7]. As a support system, however, reputation systems can only base their decisions on what
other detection mechanisms tell them, and due to the vast network of delivery mechanisms overlapping in both spam and
phishing (such as botnets, stolen shells, and mass distribution markets), the source address cannot, with certainty, determine if the
message is likely to be spam or phishing. Reputation systems also fail to meet other goals of phishing detection, such as
organization identification. Because different attacks typically originate from different source addresses, correlation between
different attacks is very limited.

 Content-Based Envelope Heuristics Reputation Systems
Distinguish spam/spoofing from phishing Yes No No
Identify targeted organizations Partial Partial No
Provide evidentiary examples of copying No No No
Correlate different attacks to a source No Partial Partial

Fig. 1.1 Existing Detection Technique Goals

2. FINGERPRINTING AS A DETECTION TECHNIQUE

Digital fingerprinting is a widely accepted approach for detecting copying among documents. Unlike probabilistic content-based
models of detection, fingerprinting techniques provide exact matches to a source document and can also track multiple
plagiarisms back to a single document or set of documents.

2.1 Goals of Digital Fingerprinting

Applying digital fingerprinting to the detection of phishing attacks meets the goals we’ve defined for phishing identification:

1. Distinguishing nuisance spam from phishing. Fingerprinting can identify specific copying between documents, and is
therefore able to distinguish nuisance spam (which does not attempt to copy a legitimate website) to phishing (which
does).

2. Identifying targeted organizations. Because fingerprinting is exact, it can be used to match a copied document to an
exact source, allowing us to identify the target organization it was copied from.

3. Provide evidentiary examples of copying. Because fingerprinting performs exact matches of content, examples of
copied content can be provided as credible evidence to refute any claims that the site was not intended to be malicious.

4. Correlate different attacks to individual sources. As we’ll illustrate, the intersection of fingerprints allows us to match
unique attributes copied throughout a particular scammer’s series of attacks on an organization.

2.2 How Fingerprinting Works

Digital fingerprinting algorithms typically operate by generating a series of digital context markers (or signatures, hashes, etc.) to
identify portions of content in a document as unique. Depending on the specific approach used, these are typically hash values,
alphanumeric checksums, or some other form of token to denote unique content. A fingerprinting algorithm appropriate for
phishing detection has three important properties: white space insensitivity, noise suppression, and position independence. Most
fingerprinting algorithms function in a similar way. An input text is provided and a series of digital markers are returned as the
output. For example, given the text:

'Tis better to have loved and lost than never to have loved at all

May result in one particular fingerprinting algorithm returning the following hash markers:

0x07a3ca26 0x1a25a210 0x1b47235f

The goal of fingerprinting is to identify copying, even if some of the text has been modified. Should the input text be slightly
altered to read:

'Tis better to hate love and lose and never to have loved at all

Both texts still share many similarities and therefore the hash markers will overlap, identifying the relationship between the two:

0x07a3ca26 0x0be4f7b3 0x1b47235f

The detection techniques we’ll discuss use this approach to generate a series of context markers which are then recorded to
identify document copying through comparison with presented test documents, namely websites. As long as the fingerprinting
approach employed follows the basic input/output paradigm shown above, any technique will fit into this application nicely,
leaving the format of the context markers fairly irrelevant.

2.3 Various Approaches to Fingerprinting

Using fingerprinting to identify phishing attacks is algorithm-independent. Many different approaches have been proposed over
the years including the techniques below.

Karp-Rabin String Matching
Karp and Rabin’s algorithm[4] for fast substring matching is the earliest version of fingerprinting based on k-grams. The solution
is to find occurrences of a particular string s of length k within a much longer string. The idea is to compare hashes of all k-grams
in the long string with a hash of s. It has some optimized hash calculation to reduce the execution time.

All-to-all Matching
All-to-all matching compares all pairs of k-grams in the collection of documents. A simple way is to select every ith hash of a
document, but this is not robust against reordering, insertions and deletions. Manber[2] chose to select all hashes that are 0 mod
p. In this way fingerprints are chosen independent of their position, and if two documents share a hash that is 0 mod p it is
selected in both documents. Heintze[3] proposed choosing the n smallest hashes of all k-grams of a document as the fingerprints
of that document. By fixing the number of hashes per document, the system would be more scalable as large documents have the
same number of fingerprints as small documents. The price for a fixed-size fingerprint set is that only near-copies of entire
documents could be detected.

SCAM (Stanford Copy Analysis Mechanism)
The idea behind SCAM[5] was that if the distance between feature vectors representing the two documents is small, these two
documents are considered similar. The features are words, and the notion of distance is a variation on standard information-
retrieval measures of similarity. The similarity measurement is based solely on word frequencies in documents.

COPS
COPS[1] shares similar concepts as SCAM, however feature vectors are constructed based on sentences. The comparison
between SCAM and COPS shows that SCAM provides better document overlap detection, however resulting in more false
positives.

Winnowing
Winnowing[4] detects similarities whenever the size of a single common substring exceeds a threshold (W). The algorithm
guarantees any matches that are more than W characters in length to be detected. The choice of hash depends only on the
contents of the window, and doesn’t depend on any external information about the position of the window in the file or its
relationship to other windows. Winnowing, however, assumes uniformity of input.

2.4 Detection Technique Applying Match Fingerprinting

This section explains the application of fingerprinting to detection and will cover the first two goals: distinguishing phishing and
binding them to a specific target. Here we will first illustrate the detection technique using an exact fingerprint matching
approach.

2.4.1 Document Retrieval and Preparation

The detection goal is to match copying between two documents, those namely being the suspect site and the legitimate version of
the site, or the suspect site and a known phishing attack. Before any detection can occur, it will be necessary to retrieve and
prepare the website sources for fingerprinting. The web pages of the suspect site can be extracted from the email itself and
retrieved using an HTTP GET.

While the stumbling block for spam filters is widely agreed to be the tokenizer, fingerprinting’s ability to identify copying may
hinge upon the document retrieval process. Understanding basic scammer trickery designed to prevent users from obtaining the
source code will help in ensuring the full source code of the website is retrieved. Some common tricks can include:

a. Using framesets or IFRAMEs to reference additional pages
b. Incorporating meta refreshes to ‘bounce’ users to other pages
c. Using callouts such as XMLHTTP to load remote pages
d. Other disgusting and dastardly obfuscations

A successful fingerprinting engine will need to account for these and other tricks to ensure the document is retrieved properly. In
keeping with the requirements of fingerprinting, the document must be prepared to eliminate white space and noise. Various
scrubbing techniques common to fingerprinting may be employed to accomplish this, the simplest of which involves eliminating
any non-alphanumeric characters.

In contrast to content-based filters, the ability to extract the actual content from the web page is irrelevant, and in fact an
obfuscated version of the page may serve as a better means of detection if the malicious site itself is used as a training document.
Since we also don’t know what, if any, encoding or script the source website is using, performing any type of decoding may lead
to a higher level of false negatives.

2.4.2 Detection by Exact Matching

Once the classification criteria has been retrieved and scrubbed, it can be fingerprinted. This will generate a series of checksums
or hashes, depending on which fingerprint algorithm is used. These hashes will be based on the HTML content and the specific
tunables of the fingerprinting approach. In Fig. 2.1, we see an example phish and sample hashes generated by a fingerprinting
algorithm.

0x0026fa80 0x004129ec 0x00da62a0 0x03f3db0e 0x06fa9461 0x06d4bb73 0x024c3386
0x0069040f 0x00f25530 0x00281f20 0x015bee8b 0x026a0340 0x003379df 0x018ec907
0x039228f5 0x0090b551 0x0121402d 0x03283fb1 0x00ebc2b2 0x03a4dcea 0x001d815b
0x01c779eb 0x0028de1b 0x00e95017 0x00f47a83 0x00baa5cb 0x01293c6b 0x0132f10e
0x001b2b34 0x00dfa027 0x018720f7 0x0335e45a 0x03719720 0x0052cc93 0x015a3b15
0x0028de1b 0x03bb7d39 0x04016646 0x028b9318 0x00334ba1 0x000ad731 0x02906079
0x009f88d3 0x00f48df6 0x0491cdfb 0x01b0d1b5 0x0411a87a

Fig. 2.1. An example phish and fingerprint hashes

We now fingerprint the original Paypal website and perform a hash comparison. If the number of matches exceeds our threshold,
we have a definitive copying event:

0x016ebbee 0x02546530 0x00da62a0 0x02079626 0x03f3db0e 0x01a4214f 0x003cab67
0x0055d8f4 0x00272399 0x00be53bb 0x009274ec 0x0322e14e 0x025f6aa9 0x0564a046
0x033902f8 0x00b0788c 0x01777ee5 0x01b08076 0x0116e6f3 0x02546b57 0x01b08076

0x01523295 0x00ab0a5d 0x015c0529 0x005924ee 0x0009bbcd 0x03b56dab 0x02c04286
0x023b5f86 0x00baa5cb 0x0162ebde 0x03dee023 0x030d9946 0x01a0cd6a 0x017196bd
0x091e583c 0x0139b2e1 0x006f60b4 0x06679235 0x0156d882 0x0023b5e3 0x025896e7
0x003f4a71 0x0637e497 0x01316dfc 0x0100f5d9 0x024536f1 0x000ad731 0x02906079
0x009f88d3 0x00114c2c 0x0051eb2f 0x00f48df6 0x00248175 0x02162f4c 0x006986d9
0x01413ce3 0x000b2636 0x03347a16 0x0113cb62

Fig. 2.2. Hashes generated of the original website, using the same fingerprinting algorithm

Depending on the fingerprinting approach used and the specific tunables, a single match may or may not be sufficient to
identifying copying. This hinges heavily on the amount of text considered in forming each fingerprint. Variables such as window
and hashing size can dramatically affect the amount of text covered by a single hash. In 2.5, we’ll discuss a probabilistic model
designed to accommodate fingerprint hashes generated on smaller, less-precise lengths of data.

2.4.3 Source Identification and Printing Repository

Training for phishing attacks doesn’t necessarily require the source website be used, as the attacks themselves can be used as
training data to identify future attacks. This creates an unsupervised training model which makes the challenge of evasion
increasingly difficult for each new attack. However, finding and printing the source for all sites to be protected can provide
immediate detection without first training any phishing attacks.

In order to perform detection against an original website in an automated environment, it’s necessary to identify the source to
serve as a means of comparison. A Paypal phish is obviously not going to match to any other website but Paypal, or previously
printed attacks against them. The simplest, however least effective approach to identifying the source is to use links to other
website content (such as images) embedded within the message or the website source. This will provide a source domain, which
can then be printed. But well constructed phishing scams don’t always link to their original source, nor do they always copy the
front page of the website. A more complete and server-side solution is required to locate and fingerprint source websites.

A source-printing repository is one approach to providing the comparison medium and correlation to a particular organization.
Establishing a printing repository involves maintaining a database of source pages and their accompanying fingerprint hashes.
When a comparison is performed, positive matches to documents in the repository are then returned. This allows for a more
practical and large-scale implementation of fingerprint identification without costing the legitimate sites additional bandwidth
overhead whenever they are targeted. Such a repository can be maintained by humans or automated with search bots or a
registration process to allow for anyone to place their organization in the repository.

The process of building a repository is very basic:

1. Obtain a list of organizations and the login page URLs on their website
2. Fingerprint each page and store the hash values in a database
3. Subsequent printing of suspect websites can now be compared to the values in the database.

Though fingerprinting works particularly well on today’s phishing scams, participating organizations can take additional steps to
make fingerprint work in their favor:

a. Use at most one or two sign-on pages that legitimate users can become familiar with
b. Make these sign-on pages complex, requiring a higher degree of copying in order to emulate them
c. Use proprietary and distinguishing text and images to serve as identifying markers
d. Use at least a few common controls (check boxes, submit buttons, etc), which would appear different on various

browsers and operating systems if a screenshot was used in the phishing attack.

2.5 Probabilistic Detection

If the fingerprinting approach used can guarantee a solid enough of a match with one or two fingerprint hashes, then exact
matching will provide very precise results. Some fingerprinting algorithms, however, are designed (or can be tuned) to operate on
small chunks of text that are likely to overlap across two or more different websites. In cases where this type of fingerprinting is
uses, a probabilistic approach to matching can be applied to incorporate accurate, but more weighed results. This approach is
more indigenous to that of biometric fingerprinting, where many individuals share similar features.

Using the same approach to building a repository as described in section 2.4, probabilistic detection now assigns probabilities to
each source hash (that is, hashes belonging to the sites we’re storing in the database) based on the spread across multiple
organizations. For example, if one particular fingerprint hash has been found in half of the overall organizations, then that
fingerprint hash is only 50% reliable and should be combined with other matches in order to determine a more certain result. One
formula for determining the probability of a hash is P=1-NM/NT, where NM represents the number of organizations matching the
hash and NT represents the total number of organizations. The reasoning behind assigning probabilities based on organizations,
and not pages, is due to the likelihood that the same organization may have multiple login pages sharing the same hash. If the
hash is indigenous to that one specific organization, it is still a 100% match.

A simple Bayesian algorithm[8] or similar algorithm can then be applied to combine the probabilities to determine a final result.
Through experimentation, and depending on the formula used to compute the probability, a threshold between 0.7 – 0.9 may
provide a good indicator of a confident result. For example, given three fingerprint hits with probabilities 0.75, 0.98, and 0.46, the
following combination might be applied:

(0.75)(0.98)(0.46)
____________________________________ = 0.9920
(0.75)(0.98)(0.46) + (1-0.75)(1-0.98)(1-0.46)

3. SOURCE CORRELATION

We’ve illustrated the general fingerprinting approaches to identifying phishing. In this section, we’ll discuss applying these
techniques to identifying attacks sharing unique information copied between each other, showing a high likelihood of originating
from the same malicious source.

3.1 Hash-Intersection

In the same fashion that hashes can be matched to legitimate websites to identify copying, an intersection of these hashes can
easily be used to identify copying of unique characteristics among different phishing attacks. If different phishing attacks prove
to be copied from one another, then there is a likelihood that they have also originated from the same source. To perform this
comparison, we compare the fingerprint hashes of two different phishing attacks and then subtract matching hashes from the
target website, as shown in Fig. 3.1.

Fig. 3.1. Intersection and subtraction of fingerprint hashes

As we see in Fig. 3.1, the hashes shared between both phishing attacks which are NOT shared by the genuine site (if any)
illustrate copying between attacks.

3.2 Fingerprinting Complex Attacks

Just as we can fingerprint legitimate sites, we can also fingerprint complex attacks that fail to match against the legitimate site, or
all attacks to increase the difficulty in evading detection. In order to evade a system using such a training paradigm, the attacker
would need to craft their attack in such a way that it not only failed to fingerprint against the target website, but against all
previous attacks. Should similar documents be used in subsequent attacks, we can then correlate them with the original attack and
not only tie them to the same likely source, but also to the legitimate site if we included this in manual training.

This provides the benefit of pushing scammers to not only obfuscate their attack from the original in a way that it will not
fingerprint against it, but to also obfuscate each attack from its predecessor to avoid detection. Eventually, the scammer will be
forced to alter the layout of the web page so drastically that it will be an obvious fake.

4. SUMMARY

This paper has covered several techniques in identifying phishing attacks by detecting copying between web pages. In detecting
copying, not only can matches be made to source documents, but between two existing attacks. Because phishing attacks hinge
on formatting attacks to closely resemble the target, there are a finite number of ways in which this data can be represented. By
learning new attacks and correlating the copying between them, each new false negative reduces the number of approaches
available to future attacks. Eventually, the attacker will be forced to obfuscate their attacks in such a way that the quality of the
mockup site is too low to convince users, or to forego obfuscation and surrender to detection. Future work will involve measuring
the efficacy of this approach against various evasion techniques, which are likely to develop, and metrics to compare the overall
tracking and correlation of progressive attacks.

5. REFERENCES

[1] S Brin, J Davis, H G-Molina. Copy detection mechanisms for ditial documents.

 In Proceedings of the ACM SIGMOD Annual Conference, San Francisco, CA 1995.
[2]: N. Heintze. Scalable document fingerprinting.
 In 1996 USENIX Workshop on Electronic Commerce, Nov 1996.

 [3]: U Manber. Finding similar files in a large file system.
 In Proceedings of the USENIX Winter 1994 Technical Conference, pp 1-10, San Francisco, CA USA 1994
 [4]: S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document fingerprinting,
 In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2003, pp76-85.

[5]: N Shivakumar and H G-Molina. SCAM: A copy detection mechanism for digital documents.
 In Proceedings of the Second Annual Conference on the Theory and Practice of Digital Libraries, 1995.
[6]: TrustedSource, http://www.trustedsource.org
[7]: Brondmo H., Olson M., Boissonneault P. Project Lumos
 http://www.espcoalition.org/Project_Lumos_White_Paper.pdf
[8] Graham, P. A Plan for Spam, August 2002
 http://www.paulgraham.com/paulgraham/spam.html

