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ABSTRACT 
Phishing is a malicious form of Internet fraud with the aim to steal valuable information such as credit cards, social security 
numbers, and account information. This is accomplished primarily by crafting a faux online presence to masquerade as a 
legitimate institution and soliciting information from unsuspecting customers. Phishing attacks involving websites are among the 
most commonplace and effective types of online fraud, having the potential to cost both victims and targeted organizations in 
privacy, reputation, and monetarily. Due to the malicious nature of phishing attacks, identifying them bears higher demands in 
detection than filtering spam or other nuisance content. This paper establishes some requirements for phishing identification and 
explains various approaches to detection by looking for copying of web site layout and structure through source code (and 
optionally image) fingerprinting. This enables us to perform a number of exact-match comparisons to genuine websites or to 
other known attacks. Lastly, we also explore techniques to correlate different attacks to a single likely source. 
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1.INTRODUCTION 
 
Successful phishing attacks are based on a form of copying, or reengineering, a website’s design and layout in order to pass 
themselves off as a genuine (targeted) website. A malicious website is crafted which looks and feels like the original site, 
convincing unsuspecting users that they are giving personal information to a trusted organization. Users are frequently drawn to 
the sites by forged emails designed to look like legitimate correspondence and may even copy the body from real email, but when 
the user clicks a link to visit the website, they will be directed to the malicious site instead. The more convincing a phishing 
attack appears - or rather, the more genuine a malicious website looks - the more success the attack will have in extracting 
personal information. Some phishing attacks go so far as to create faux websites for which there is no legitimate counterpart; e.g. 
a page prompting users for personal information the organization wouldn’t have otherwise asked for. 
 
In this section, we will discuss the challenges and goals of a successful anti-phishing solution. In section 2, we will cover 
fingerprinting as a technique to detect phishing attacks and cover various approaches to printing itself. We’ll provide an 
illustration of the match process and cover a probabilistic approach towards detection when using smaller-scale fingerprints. 
Finally, section 3 will cover source correlation and how different attacks can be correlated back to a single likely source. 
 
1.1 Background 
 
Phishing attacks are a presence whose existence is under false pretenses, and with the goal of convincing the user to enter 
personal information such as credit card numbers, social security numbers, or any other information that is valuable to the 
attacker. The primary problem in detecting phishing attacks is that their delivery mechanism bears such a close resemblance to 
legitimate correspondence that many content-based detection techniques provide only fuzzy results at best. On top of this, it is the 
actual attack, and not the email, that poses the real threat and the added demand of correlating the attack to the targeted site 
makes mere content-based detection incomplete. 
 
Fingerprint detection is a technique used to identify copying between documents, in this case faux websites. Applying 



fingerprinting technique to this problem allows for the detection of copying between a legitimate institution’s website or of 
another, similar attack. This allows us to train previous attacks, legitimate web pages, or a mixture of both. By identifying this 
copying, we identify the attacks. The benefits of fingerprinting are two-fold. First, in precise identification of an attack, but 
secondly by forcing scammers to further obfuscate their layout and source code to avoid printing against an original site or a 
previous attack. In doing so, this increases the risk that the site will appear disgenuine. 
 
1.2 Detection Goals 
 
The goals for identifying phishing can be slightly more demanding than those of identifying spam. Identifying a message as 
undesirable is relatively easy to accomplish using many methods, but because phishing attacks require a different takedown 
strategy, it’s also necessary to identify messages that are specifically phishing. The burden of enforcement also rests primarily on 
the targeted organization rather than the service provider, and so institutions need to know when they are targeted so they can 
involve law enforcement. Once law enforcement has made arrests, proving that copying actually took place (as opposed to a 
confusion by unsavvy users) can prove useful in prosecution. Finally, managing the problem requires knowledge of which 
sources are responsible for the largest number of attacks in order to focus efforts and avoid wasting time on minor offenders, or 
to increase the number of charges against an individual that has already been caught. To summarize, an effective anti-phishing 
solution should meet the following requirements: 
 

1. Distinguish nuisance spam/spoofing from phishing 
2. Identify the organization being targeted in the phishing attack 
3. Provide evidentiary examples of copying 
4. Correlate different attacks to individual sources 

  
1.3 Existing Detection Approaches 
 
Many approaches exist today in the field of email filtering, some of which are used with varying levels of efficiency in 
identifying phishing. Most operate on some characteristics of the message content or envelope. Some attempts have been made to 
apply these techniques to website content; however the existing approaches fail to satisfy many of the goals specific to phishing 
identification, as illustrated in Fig. 1.1. 
 
1.3.1  Content-Based Filtering 
 
Content-based filtering, such as Bayesian content analysis, has shown to be extremely effective at identifying unwanted content, 
and can even identify many phishing attacks as spam. Content-based filtering operates on the message content to weigh key 
words or phrases of interest and assign an overall probability for a particular category. These categories, however, must be 
predefined and therefore it is infeasible to use content-based filtering as a mechanism for identifying specific organizations being 
targeted. Phishing messages also bear a significant resemblance to both spam and legitimate mail, making it much more difficult 
to classify than the linearly separable problem of spam detection. A content-based filter’s efficiency in identifying phishing 
messages can be significantly lower when the user also receives legitimate mail from the target organization, making it more 
difficult for the filter to tell the difference between the two, nevertheless the results are usually acceptable. 
 
Other content-based approaches, such as KNN (K-Nearest Neighbor) provide clustering methods capable of dynamically creating 
groups of like messages, however mapping these clusters back to individual organizations (as well as the existing issues 
discussed of content identification) can be fuzzy and require significant maintenance. Content-based filtering provides no true 
evidentiary proof of copying, as it can only deliver the number of hints it found interesting, which may be sparse words or 
phrases spread throughout the document. This same limitation makes it difficult to correlate different attacks from similar 
sources, again, as only various sparse pieces of text are used. 
 
1.3.2  Envelope Heuristics 
 
Envelope heuristics involve performing various tests on the headers of a message to determine whether or not they have the 
characteristics of a forged message. It is relatively easy to identify forged messages whose domain name does not match the 
reverse DNS of the sending mail server, however with many caveats. Not all businesses run their own mail server, and in fact 
many businesses are still “virtual”, whose employees use whatever mail server their ISP provides (making tools such as sender-
policy framework infeasible).  
 
More importantly, however, identifying forgery doesn’t distinguish spoofed spam from actual phishing attacks. Because a large 
percentage of spam also forges the sender address, there is no way to identify, with any level of certainty, which messages are 
phishing. Envelope heuristics also lack the ability to provide definitive information about the targeted organization. While many 
phishing attacks spoof the target domain, many also do not. For example, many PayPal phishes use a sender address of 
support@gaypal.com, or historically, support@paypai.com. Only source address information can be used to correlate attacks, and 
so different attacks (which are likely to originate from different source addresses) cannot be correlated to each other. 
 
1.3.3  Reputation Systems 



 
Reputation systems provide collaborative intelligence about source nodes on a network and provide invaluable information about 
sources of network phenomenon, serving as a correlation piece. Some examples of these systems include CipherTrust 
TrustedSource[6] and Project Lumos[7]. As a support system, however, reputation systems can only base their decisions on what 
other detection mechanisms tell them, and due to the vast network of delivery mechanisms overlapping in both spam and 
phishing (such as botnets, stolen shells, and mass distribution markets), the source address cannot, with certainty, determine if the 
message is likely to be spam or phishing. Reputation systems also fail to meet other goals of phishing detection, such as 
organization identification. Because different attacks typically originate from different source addresses, correlation between 
different attacks is very limited. 
 
 Content-Based Envelope Heuristics Reputation Systems 
Distinguish spam/spoofing from phishing Yes No No 
Identify targeted organizations Partial Partial No 
Provide evidentiary examples of copying No No No 
Correlate different attacks to a source No Partial Partial 

 
Fig. 1.1 Existing Detection Technique Goals 

 
2. FINGERPRINTING AS A DETECTION TECHNIQUE 
 
Digital fingerprinting is a widely accepted approach for detecting copying among documents. Unlike probabilistic content-based 
models of detection, fingerprinting techniques provide exact matches to a source document and can also track multiple 
plagiarisms back to a single document or set of documents. 
 
2.1 Goals of Digital Fingerprinting 
 
Applying digital fingerprinting to the detection of phishing attacks meets the goals we’ve defined for phishing identification: 
 

1. Distinguishing nuisance spam from phishing. Fingerprinting can identify specific copying between documents, and is 
therefore able to distinguish nuisance spam (which does not attempt to copy a legitimate website) to phishing (which 
does). 

2. Identifying targeted organizations. Because fingerprinting is exact, it can be used to match a copied document to an 
exact source, allowing us to identify the target organization it was copied from. 

3. Provide evidentiary examples of copying. Because fingerprinting performs exact matches of content, examples of 
copied content can be provided as credible evidence to refute any claims that the site was not intended to be malicious.  

4. Correlate different attacks to individual sources. As we’ll illustrate, the intersection of fingerprints allows us to match 
unique attributes copied throughout a particular scammer’s series of attacks on an organization. 

 
2.2 How Fingerprinting Works 
 
Digital fingerprinting algorithms typically operate by generating a series of digital context markers (or signatures, hashes, etc.) to 
identify portions of content in a document as unique. Depending on the specific approach used, these are typically hash values, 
alphanumeric checksums, or some other form of token to denote unique content. A fingerprinting algorithm appropriate for 
phishing detection has three important properties: white space insensitivity, noise suppression, and position independence. Most 
fingerprinting algorithms function in a similar way. An input text is provided and a series of digital markers are returned as the 
output. For example, given the text: 
 
'Tis better to have loved and lost than never to have loved at all 

 
May result in one particular fingerprinting algorithm returning the following hash markers: 
 
0x07a3ca26 0x1a25a210 0x1b47235f  
 
The goal of fingerprinting is to identify copying, even if some of the text has been modified. Should the input text be slightly 
altered to read: 
 
'Tis better to hate love and lose and never to have loved at all 
 
Both texts still share many similarities and therefore the hash markers will overlap, identifying the relationship between the two: 
 
0x07a3ca26 0x0be4f7b3 0x1b47235f  



 
The detection techniques we’ll discuss use this approach to generate a series of context markers which are then recorded to 
identify document copying through comparison with presented test documents, namely websites. As long as the fingerprinting 
approach employed follows the basic input/output paradigm shown above, any technique will fit into this application nicely, 
leaving the format of the context markers fairly irrelevant.  
 
2.3 Various Approaches to Fingerprinting 
 
Using fingerprinting to identify phishing attacks is algorithm-independent. Many different approaches have been proposed over 
the years including the techniques below.  
 
Karp-Rabin String Matching 
Karp and Rabin’s algorithm[4] for fast substring matching is the earliest version of fingerprinting based on k-grams. The solution 
is to find occurrences of a particular string s of length k within a much longer string. The idea is to compare hashes of all k-grams 
in the long string with a hash of s. It has some optimized hash calculation to reduce the execution time. 
 
All-to-all Matching 
All-to-all matching compares all pairs of k-grams in the collection of documents. A simple way is to select every ith hash of a 
document, but this is not robust against reordering, insertions and deletions.  Manber[2] chose to select all hashes that are 0 mod 
p. In this way fingerprints are chosen independent of their position, and if two documents share a hash that is 0 mod p it is 
selected in both documents. Heintze[3] proposed choosing the n smallest hashes of all k-grams of a document as the fingerprints 
of that document. By fixing the number of hashes per document, the system would be more scalable as large documents have the 
same number of fingerprints as small documents. The price for a fixed-size fingerprint set is that only near-copies of entire 
documents could be detected.  

 
SCAM (Stanford Copy Analysis Mechanism) 
The idea behind SCAM[5] was that if the distance between feature vectors representing the two documents is small, these two 
documents are considered similar. The features are words, and the notion of distance is a variation on standard information-
retrieval measures of similarity. The similarity measurement is based solely on word frequencies in documents. 
 
COPS 
COPS[1] shares similar concepts as SCAM, however feature vectors are constructed based on sentences. The comparison 
between SCAM and COPS shows that SCAM provides better document overlap detection, however resulting in more false 
positives. 

 
Winnowing 
Winnowing[4] detects similarities whenever the size of a single common substring exceeds a threshold (W). The algorithm 
guarantees any matches that are more than W characters in length to be detected. The choice of hash depends only on the 
contents of the window, and doesn’t depend on any external information about the position of the window in the file or its 
relationship to other windows. Winnowing, however, assumes uniformity of input. 
 
2.4 Detection Technique Applying Match Fingerprinting 
 
This section explains the application of fingerprinting to detection and will cover the first two goals: distinguishing phishing and 
binding them to a specific target. Here we will first illustrate the detection technique using an exact fingerprint matching 
approach. 
 
2.4.1 Document Retrieval and Preparation 
 
The detection goal is to match copying between two documents, those namely being the suspect site and the legitimate version of 
the site, or the suspect site and a known phishing attack. Before any detection can occur, it will be necessary to retrieve and 
prepare the website sources for fingerprinting. The web pages of the suspect site can be extracted from the email itself and 
retrieved using an HTTP GET.  
 
While the stumbling block for spam filters is widely agreed to be the tokenizer, fingerprinting’s ability to identify copying may 
hinge upon the document retrieval process. Understanding basic scammer trickery designed to prevent users from obtaining the 
source code will help in ensuring the full source code of the website is retrieved. Some common tricks can include: 
 

a. Using framesets or IFRAMEs to reference additional pages 
b. Incorporating meta refreshes to ‘bounce’ users to other pages 
c. Using callouts such as XMLHTTP to load remote pages 
d. Other disgusting and dastardly obfuscations 



 
A successful fingerprinting engine will need to account for these and other tricks to ensure the document is retrieved properly. In 
keeping with the requirements of fingerprinting, the document must be prepared to eliminate white space and noise. Various 
scrubbing techniques common to fingerprinting may be employed to accomplish this, the simplest of which involves eliminating 
any non-alphanumeric characters. 
 
In contrast to content-based filters, the ability to extract the actual content from the web page is irrelevant, and in fact an 
obfuscated version of the page may serve as a better means of detection if the malicious site itself is used as a training document. 
Since we also don’t know what, if any, encoding or script the source website is using, performing any type of decoding may lead 
to a higher level of false negatives.  
 
2.4.2 Detection by Exact Matching 
 
Once the classification criteria has been retrieved and scrubbed, it can be fingerprinted. This will generate a series of checksums 
or hashes, depending on which fingerprint algorithm is used. These hashes will be based on the HTML content and the specific 
tunables of the fingerprinting approach. In Fig. 2.1, we see an example phish and sample hashes generated by a fingerprinting 
algorithm. 
 

 
 
0x0026fa80  0x004129ec  0x00da62a0  0x03f3db0e  0x06fa9461  0x06d4bb73  0x024c3386  
0x0069040f  0x00f25530  0x00281f20  0x015bee8b  0x026a0340  0x003379df  0x018ec907  
0x039228f5  0x0090b551  0x0121402d  0x03283fb1  0x00ebc2b2  0x03a4dcea  0x001d815b  
0x01c779eb  0x0028de1b  0x00e95017  0x00f47a83  0x00baa5cb  0x01293c6b  0x0132f10e  
0x001b2b34  0x00dfa027  0x018720f7  0x0335e45a  0x03719720  0x0052cc93  0x015a3b15  
0x0028de1b  0x03bb7d39  0x04016646  0x028b9318  0x00334ba1  0x000ad731  0x02906079  
0x009f88d3  0x00f48df6  0x0491cdfb  0x01b0d1b5  0x0411a87a   
 

Fig. 2.1. An example phish and fingerprint hashes 
 
We now fingerprint the original Paypal website and perform a hash comparison. If the number of matches exceeds our threshold, 
we have a definitive copying event: 
 
0x016ebbee  0x02546530  0x00da62a0  0x02079626  0x03f3db0e  0x01a4214f  0x003cab67  
0x0055d8f4  0x00272399  0x00be53bb  0x009274ec  0x0322e14e  0x025f6aa9  0x0564a046  
0x033902f8  0x00b0788c  0x01777ee5  0x01b08076  0x0116e6f3  0x02546b57  0x01b08076  



0x01523295  0x00ab0a5d  0x015c0529  0x005924ee  0x0009bbcd  0x03b56dab  0x02c04286  
0x023b5f86  0x00baa5cb  0x0162ebde  0x03dee023  0x030d9946  0x01a0cd6a  0x017196bd  
0x091e583c  0x0139b2e1  0x006f60b4  0x06679235  0x0156d882  0x0023b5e3  0x025896e7  
0x003f4a71  0x0637e497  0x01316dfc  0x0100f5d9  0x024536f1  0x000ad731  0x02906079  
0x009f88d3  0x00114c2c  0x0051eb2f  0x00f48df6  0x00248175  0x02162f4c  0x006986d9  
0x01413ce3  0x000b2636  0x03347a16  0x0113cb62   
 

Fig. 2.2. Hashes generated of the original website, using the same fingerprinting algorithm 
 
Depending on the fingerprinting approach used and the specific tunables, a single match may or may not be sufficient to 
identifying copying. This hinges heavily on the amount of text considered in forming each fingerprint. Variables such as window 
and hashing size can dramatically affect the amount of text covered by a single hash. In 2.5, we’ll discuss a probabilistic model 
designed to accommodate fingerprint hashes generated on smaller, less-precise lengths of data. 
 
2.4.3 Source Identification and Printing Repository 
 
Training for phishing attacks doesn’t necessarily require the source website be used, as the attacks themselves can be used as 
training data to identify future attacks. This creates an unsupervised training model which makes the challenge of evasion 
increasingly difficult for each new attack. However, finding and printing the source for all sites to be protected can provide 
immediate detection without first training any phishing attacks.  
 
In order to perform detection against an original website in an automated environment, it’s necessary to identify the source to 
serve as a means of comparison. A Paypal phish is obviously not going to match to any other website but Paypal, or previously 
printed attacks against them. The simplest, however least effective approach to identifying the source is to use links to other 
website content (such as images) embedded within the message or the website source. This will provide a source domain, which 
can then be printed. But well constructed phishing scams don’t always link to their original source, nor do they always copy the 
front page of the website. A more complete and server-side solution is required to locate and fingerprint source websites.  
 
A source-printing repository is one approach to providing the comparison medium and correlation to a particular organization. 
Establishing a printing repository involves maintaining a database of source pages and their accompanying fingerprint hashes. 
When a comparison is performed, positive matches to documents in the repository are then returned. This allows for a more 
practical and large-scale implementation of fingerprint identification without costing the legitimate sites additional bandwidth 
overhead whenever they are targeted. Such a repository can be maintained by humans or automated with search bots or a 
registration process to allow for anyone to place their organization in the repository. 
 
The process of building a repository is very basic: 

1. Obtain a list of organizations and the login page URLs on their website 
2. Fingerprint each page and store the hash values in a database 
3. Subsequent printing of suspect websites can now be compared to the values in the database. 

 
Though fingerprinting works particularly well on today’s phishing scams, participating organizations can take additional steps to 
make fingerprint work in their favor: 

a. Use at most one or two sign-on pages that legitimate users can become familiar with 
b. Make these sign-on pages complex, requiring a higher degree of copying in order to emulate them 
c. Use proprietary and distinguishing text and images to serve as identifying markers 
d. Use at least a few common controls (check boxes, submit buttons, etc), which would appear different on various 

browsers and operating systems if a screenshot was used in the phishing attack. 
 
2.5 Probabilistic Detection 
 
If the fingerprinting approach used can guarantee a solid enough of a match with one or two fingerprint hashes, then exact 
matching will provide very precise results. Some fingerprinting algorithms, however, are designed (or can be tuned) to operate on 
small chunks of text that are likely to overlap across two or more different websites. In cases where this type of fingerprinting is 
uses, a probabilistic approach to matching can be applied to incorporate accurate, but more weighed results. This approach is 
more indigenous to that of biometric fingerprinting, where many individuals share similar features.  
 
Using the same approach to building a repository as described in section 2.4, probabilistic detection now assigns probabilities to 
each source hash (that is, hashes belonging to the sites we’re storing in the database) based on the spread across multiple 
organizations. For example, if one particular fingerprint hash has been found in half of the overall organizations, then that 
fingerprint hash is only 50% reliable and should be combined with other matches in order to determine a more certain result. One 
formula for determining the probability of a hash is P=1-NM/NT, where NM represents the number of organizations matching the 
hash and NT represents the total number of organizations. The reasoning behind assigning probabilities based on organizations, 
and not pages, is due to the likelihood that the same organization may have multiple login pages sharing the same hash. If the 
hash is indigenous to that one specific organization, it is still a 100% match. 



 
A simple Bayesian algorithm[8] or similar algorithm can then be applied to combine the probabilities to determine a final result. 
Through experimentation, and depending on the formula used to compute the probability, a threshold between 0.7 – 0.9 may 
provide a good indicator of a confident result. For example, given three fingerprint hits with probabilities 0.75, 0.98, and 0.46, the 
following combination might be applied: 
 
(0.75)(0.98)(0.46) 
____________________________________ = 0.9920 
(0.75)(0.98)(0.46) + (1-0.75)(1-0.98)(1-0.46) 
 
 
3. SOURCE CORRELATION 
 
We’ve illustrated the general fingerprinting approaches to identifying phishing. In this section, we’ll discuss applying these 
techniques to identifying attacks sharing unique information copied between each other, showing a high likelihood of originating 
from the same malicious source.  
 
3.1 Hash-Intersection 
 
In the same fashion that hashes can be matched to legitimate websites to identify copying, an intersection of these hashes can 
easily be used to identify copying of unique characteristics among different phishing attacks. If different phishing attacks prove 
to be copied from one another, then there is a likelihood that they have also originated from the same source. To perform this 
comparison, we compare the fingerprint hashes of two different phishing attacks and then subtract matching hashes from the 
target website, as shown in Fig. 3.1. 
 

 
Fig. 3.1. Intersection and subtraction of fingerprint hashes 

 
As we see in Fig. 3.1, the hashes shared between both phishing attacks which are NOT shared by the genuine site (if any) 
illustrate copying between attacks. 
 
3.2 Fingerprinting Complex Attacks 
 
Just as we can fingerprint legitimate sites, we can also fingerprint complex attacks that fail to match against the legitimate site, or 
all attacks to increase the difficulty in evading detection. In order to evade a system using such a training paradigm, the attacker 
would need to craft their attack in such a way that it not only failed to fingerprint against the target website, but against all 
previous attacks. Should similar documents be used in subsequent attacks, we can then correlate them with the original attack and 
not only tie them to the same likely source, but also to the legitimate site if we included this in manual training. 
 



This provides the benefit of pushing scammers to not only obfuscate their attack from the original in a way that it will not 
fingerprint against it, but to also obfuscate each attack from its predecessor to avoid detection. Eventually, the scammer will be 
forced to alter the layout of the web page so drastically that it will be an obvious fake. 
 
4. SUMMARY 
 
This paper has covered several techniques in identifying phishing attacks by detecting copying between web pages. In detecting 
copying, not only can matches be made to source documents, but between two existing attacks. Because phishing attacks hinge 
on formatting attacks to closely resemble the target, there are a finite number of ways in which this data can be represented. By 
learning new attacks and correlating the copying between them, each new false negative reduces the number of approaches 
available to future attacks. Eventually, the attacker will be forced to obfuscate their attacks in such a way that the quality of the 
mockup site is too low to convince users, or to forego obfuscation and surrender to detection. Future work will involve measuring 
the efficacy of this approach against various evasion techniques, which are likely to develop, and metrics to compare the overall 
tracking and correlation of progressive attacks.  
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